TURBULENCE

Carte mentale

Élargissez votre recherche dans Universalis

Turbulence est synonyme d'agitation, désordre, chaos. L'évolution spatiale ou temporelle de nombreux phénomènes est caractérisée par une absence apparente d'ordre, la coexistence d'échelles très différentes, l'impossibilité d'une reproduction et d'une prévision détaillées. Un tel comportement est qualifié de turbulent.

Les écoulements fluides en offrent les illustrations les plus courantes : rafales de vent ou tourbillons d'un torrent, etc. Les hydrauliciens, en particulier J. Boussinesq et O. Reynolds, ont identifié vers la fin du xixe siècle deux régimes d'écoulement, l'un régulier ou laminaire, l'autre irrégulier ou turbulent, jouissant de propriétés très différentes, notamment pour la diffusion des grandeurs attachées au fluide. La méthode statistique fut naturellement utilisée pour ce problème aux applications nombreuses et importantes, par des chercheurs comme L. Prandtl, G. I. Taylor, T. von Karman, A. N. Kolmogorov, A. A. Townsend, S. Corrsin et R. H. Kraichnan, mais elle n'a pas connu dans ce domaine un succès aussi complet que dans d'autres. Un écoulement turbulent établi combine en effet des structures tourbillonnaires dont les échelles couvrent une gamme large et continue, et qui sont toutes en forte interaction en raison de la non-linéarité des équations de la mécanique des fluides. L'effet des petites structures affecte donc le comportement des grosses, dont l'influence compromet simultanément l'universalité statistique des petites, marquées d'une forte intermittence interne.

L. Landau avait associé le chaos turbulent à la présence d'un très grand nombre de degrés de liberté, mis en jeu après un nombre équivalent de bifurcations des solutions des équations de Navier-Stokes. E. Lorenz puis D. Ruelle et F. Takens ont introduit des conceptions radicalement nouvelles sur la nature et le mécanisme d'apparition de la turbulence, qui étendent considérablement le domaine d'application de cette notion. On l'associe aujourd' [...]


1  2  3  4  5
pour nos abonnés,
l’article se compose de 36 pages

Médias de l’article

Turbulences : exemples de bifurcations

Turbulences : exemples de bifurcations
Crédits : Encyclopædia Universalis France

graphique

Turbulence : exemple de tore T6

Turbulence : exemple de tore T6
Crédits : Encyclopædia Universalis France

graphique

Turbulence : le système de Lorenz et la SCI

Turbulence : le système de Lorenz et la SCI
Crédits : Encyclopædia Universalis France

graphique

Turbulence: un exemple de S.C.I.

Turbulence: un exemple de S.C.I.
Crédits : Encyclopædia Universalis France

graphique

Afficher les 43 médias de l'article


Écrit par :

Classification

Autres références

«  TURBULENCE  » est également traité dans :

ATMOSPHÈRE - Thermodynamique

  • Écrit par 
  • Jean-Pierre CHALON
  •  • 7 715 mots
  •  • 7 médias

Dans le chapitre « La convection forcée »  : […] Malgré l’absence d’instabilité convective, l'air peut cependant monter s’il rencontre un relief, une barrière montagneuse, une zone de resserrement entre deux reliefs importants (cols, vallées, passages entre deux îles proches...) ou de fortes variations de la rugosité du sol (régions côtières, orées des bois...), la surface d'un front chaud ou froid, ou encore s’il se trouve dans une région de co […] Lire la suite

FLUIDE, physique

  • Écrit par 
  • Étienne GUYON
  •  • 1 356 mots

Dans le chapitre « Viscosité »  : […] Au plan macroscopique, la première manifestation d'un liquide est la viscosité dont on fait spontanément l'expérience quand, pour tester les caractéristiques d'une huile, on en place une goutte entre deux doigts qu'on déplace parallèlement l'un par rapport à l'autre. Dans cette opération, dite de cisaillement, on évalue la force de résistance au mouvement. Elle est proportionnelle aux aires des su […] Lire la suite

MATIÈRE (physique) - Plasmas

  • Écrit par 
  • Patrick MORA
  •  • 7 678 mots
  •  • 4 médias

Dans le chapitre «  Instabilités et turbulence dans les plasmas »  : […] La formation de vagues à la surface de l'eau sous l'effet du vent ou le développement de la turbulence dans les écoulements hydrodynamiques à nombre de Reynolds élevé sont des manifestations familières des instabilités et de la turbulence dans les fluides. Les plasmas, qui sont des fluides constitués de particules chargées, peuvent être de même le siège de nombreux phénomènes instables, conduisan […] Lire la suite

AÉRODYNAMIQUE

  • Écrit par 
  • Bruno CHANETZ, 
  • Jean DÉLERY, 
  • Jean-Pierre VEUILLOT
  •  • 7 222 mots
  •  • 7 médias

Dans le chapitre «  L'aérodynamique et la théorie »  : […] Les équations dites de Navier-Stokes 'constituent le principal modèle mathématique de l'aérodynamique « classique », c'est-à-dire limitée au régime continu pour lequel les échelles de longueur caractéristiques sont grandes par rapport au libre parcours moyen des molécules et à des niveaux d'énergie excluant les interactions physico-chimiques des molécules d'azote et d'oxygène constituant l'air. C […] Lire la suite

AÉRONOMIE

  • Écrit par 
  • Gaston KOCKARTS
  •  • 4 141 mots
  •  • 11 médias

Dans le chapitre «  Phénomènes de transport »  : […] La distribution des constituants atmosphériques soumis à l'action du rayonnement solaire et impliqués dans de nombreuses réactions chimiques ne peut pas être évaluée en faisant uniquement un bilan des productions et des pertes. Il faut aussi tenir compte des phénomènes de transport capables de modifier fortement la répartition en altitude et en latitude des constituants de l'atmosphère. Il y a lie […] Lire la suite

BERGÉ PIERRE (1934-1997)

  • Écrit par 
  • Louis BOYER, 
  • Monique DUBOIS-GANCE, 
  • Yves POMEAU
  •  • 826 mots
  •  • 1 média

Pierre Bergé, chercheur et expérimentateur talentueux, fut un grand physicien dans le domaine de la matière condensée. Originaire de Pau, il fit ses études supérieures à l'École centrale de Nantes. Toute sa carrière de physicien fut effectuée au Commissariat à l'énergie atomique, centre d’études de Saclay, où il entra en 1957. Il y exerça les fonctions de chef du service de l'état condensé de 1979 […] Lire la suite

CHAOS DÉTERMINISTE THÉORIE DU

  • Écrit par 
  • Bernard PIRE
  •  • 318 mots

L'article « Sur la nature de la turbulence », publié en 1971 dans la revue Communications in Mathematical Physics , marque les débuts de la théorie du chaos déterministe. Le physicien belge David Ruelle et le mathématicien néerlandais Floris Takens y développent une vision nouvelle de la turbulence. Ils y analysent des modèles mathématiques de systèmes qui dissipent une partie de leur énergie en […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Équations non linéaires

  • Écrit par 
  • Claude BARDOS
  •  • 10 860 mots
  •  • 3 médias

Dans le chapitre « Les équations de Navier-Stokes »  : […] Le chapitre précédent était consacré aux systèmes hyperboliques non linéaires, domaine où la différence entre le comportement des problèmes linéaires et les comportements des problèmes non linéaires apparaît de manière très évidente. Mais ces systèmes présentent les inconvénients suivants : Il n'existe que des résultats partiels et la plupart des questions restent largement ouvertes. Les applicati […] Lire la suite

EXOPLANÈTES - Méthodes de détection

  • Écrit par 
  • Anne-Marie LAGRANGE
  •  • 2 907 mots
  •  • 7 médias

Dans le chapitre « L’imagerie, méthode directe  »  : […] Les méthodes indirectes souffrent d’une limitation importante : elles requièrent d’observer l’étoile pendant au moins une période de révolution de l’hypothétique exoplanète pour assurer une détection. Ainsi, pour mettre en évidence une exoplanète qui serait à la même distance de son étoile que Jupiter du Soleil, il faut observer l’étoile hôte pendant douze ans, pendant trente ans pour une analogue […] Lire la suite

FLUIDES MÉCANIQUE DES

  • Écrit par 
  • Jean-François DEVILLERS, 
  • Claude FRANÇOIS, 
  • Bernard LE FUR
  •  • 8 846 mots
  •  • 4 médias

Dans le chapitre « Couches limites turbulentes »  : […] Lorsque la turbulence est établie, les équations de Navier-Stokes demeurent valables pour décrire le mouvement instantané du fluide au sein de la couche limite, mais la résolution du problème devient impossible, du fait du caractère aléatoire des fluctuations de toutes les grandeurs physiques. C'est à Osborn Reynolds que revient l'idée d'introduire dans ces mêmes équations la décomposition en val […] Lire la suite

Voir aussi

Pour citer l’article

Fabien ANSELMET, Michel COANTIC, Gérard TAVERA, « TURBULENCE », Encyclopædia Universalis [en ligne], consulté le 25 octobre 2020. URL : https://www.universalis.fr/encyclopedie/turbulence/