FLUIDES MÉCANIQUE DES

Carte mentale

Élargissez votre recherche dans Universalis

La mécanique des fluides constitue l'extension de la mécanique rationnelle à une classe de milieux continus dont les déformations peuvent prendre des valeurs aussi grandes que l'on veut. On désigne sous le nom général de fluides des corps matériels, gaz, liquides et plasmas, qui peuvent se mettre sous une forme quelconque lorsqu'ils sont soumis à un système de forces, ces forces pouvant être aussi faibles que l'on veut, à condition qu'on les fasse agir pendant un temps assez long. Cette définition permet d'exclure les corps plastiques, qui se comportent comme des solides tant que les contraintes en leur sein ne dépassent pas un certain seuil.

Ainsi, comme en mécanique rationnelle, on distingue une cinématique, une statique et une dynamique des fluides. Le principe de conservation de l'énergie et la loi fondamentale de la dynamique, compte tenu des forces de contact qui dépendent des vitesses de déformation du fluide, s'appliquent à des éléments de volume du fluide infiniment petits à notre échelle, mais contenant encore un nombre suffisant de molécules pour que les grandeurs attachées à ces éléments de volume soient des fonctions continues des coordonnées.

Les méthodes théoriques de détermination des champs de vitesses et de contraintes impliquent la résolution d'équations aux dérivées partielles non linéaires, tâche que l'on confie maintenant aux ordinateurs. Les études expérimentales peuvent s'effectuer soit directement, comme dans les autres sciences, soit sur des modèles réduits, placés dans des souffleries aérodynamiques ou hydrauliques, ou encore dans des bassins de carènes. Les réflexions sur la façon de passer des résultats obtenus sur des modèles réduits aux valeurs correspondant à la vraie grandeur ont donné naissance à l'analyse dimensionnelle : les phénomènes dépendent de nombres sans dimensions, dont les valeurs doivent être les mêmes pour le modèle réduit et le cas réel.

Les lois de la mécanique des fluides se sont dégagées p [...]


1  2  3  4  5
pour nos abonnés,
l’article se compose de 14 pages



Médias de l’article

Archimède

Archimède
Crédits : Hulton Archive/ Getty Images

photographie

Équations de la dynamique des fluides

Équations de la dynamique des fluides
Crédits : Encyclopædia Universalis France

dessin

Turbulences en fonction du nombre de Reynolds

Turbulences en fonction du nombre de Reynolds
Crédits : G. L. Brown, A. L. Roshko, California Institute of Technology, Pasadena, Californie

photographie

Écoulement dans une couche limite

Écoulement dans une couche limite
Crédits : Encyclopædia Universalis France

graphique





Écrit par :

  • : docteur ès sciences, chef de la section fluides et thermique à l'École nationale supérieure des techniques avancées
  • : ingénieur en chef de l'Armement, professeur à l'École nationale supérieure des techniques avancées, maître de conférences à l'École polytechnique, directeur de l'enseignement militaire à la Délégation générale pour l'armement, Arcueil
  • : directeur de recherche au C.N.R.S., directeur du laboratoire de mécanique théorique de l'université de Paris-VI-Pierre-et-Marie-Curie

Classification


Autres références

«  FLUIDES MÉCANIQUE DES  » est également traité dans :

AÉRODYNAMIQUE

  • Écrit par 
  • Bruno CHANETZ, 
  • Jean DÉLERY, 
  • Jean-Pierre VEUILLOT
  •  • 7 222 mots
  •  • 7 médias

Dans le chapitre «  L'aérodynamique et la théorie »  : […] Les équations dites de Navier-Stokes 'constituent le principal modèle mathématique de l'aérodynamique « classique », c'est-à-dire limitée au régime continu pour lequel les échelles de longueur caractéristiques sont grandes par rapport au libre parcours moyen des molécules et à des niveaux d'énergie excluant les interactions physico-chimiques des molécules d'azote et d'oxygène constituant l'air. C […] Lire la suite

COANDA EFFET

  • Écrit par 
  • Bertrand DREYFUS
  •  • 562 mots

Étrange phénomène de la mécanique des fluides, découvert par hasard, à la suite d'un contretemps, au cours d'une expérience d'aéronautique, par l'ingénieur aérodynamicien roumain Henri Coanda (1886-1972), qui lui donna son nom. L'effet Coanda se présente de la manière suivante : lorsqu'un fluide (aussi bien un gaz qu'un liquide) sort d'un récipient par un orifice ou un tuyau, une partie de ce flui […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Équations non linéaires

  • Écrit par 
  • Claude BARDOS
  •  • 10 860 mots
  •  • 3 médias

Dans le chapitre « Les équations de Navier-Stokes »  : […] Le chapitre précédent était consacré aux systèmes hyperboliques non linéaires, domaine où la différence entre le comportement des problèmes linéaires et les comportements des problèmes non linéaires apparaît de manière très évidente. Mais ces systèmes présentent les inconvénients suivants : Il n'existe que des résultats partiels et la plupart des questions restent largement ouvertes. Les applicati […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Sources et applications

  • Écrit par 
  • Martin ZERNER
  •  • 6 318 mots
  •  • 1 média

Dans le chapitre « L'équation de la chaleur et le type parabolique »  : […] Si les équations hyperboliques décrivent l'évolution des phénomènes physiques réversibles, les phénomènes irréversibles relèvent du type parabolique dont le prototype est l'équation de la chaleur, dite aussi de Fourier : Notons tout de suite qu'au contraire de l'équation des ondes cette équation est modifiée par le changement de t en −  t . Elle décrit la diffusion de la chaleur, mais aussi bien […] Lire la suite

ÉQUATIONS AUX DÉRIVÉES PARTIELLES (notions de base)

  • Écrit par 
  • Yves GAUTIER
  •  • 1 580 mots
  •  • 2 médias

Beaucoup de phénomènes peuvent être décrits par une fonction. Par exemple, le déplacement d’un mobile dans l’espace peut être défini par une fonction f ( x ,  y ,  z ) où les coordonnées x , y et z correspondent à tous les points de l’espace occupés par le mobile traçant ainsi sa trajectoire. La dérivée (opération mathématique) de cette fonction  f a une signification concrète : elle donne la v […] Lire la suite

FLUIDIQUE

  • Écrit par 
  • Claude FRANÇOIS
  •  • 457 mots

Une technologie fondée sur les propriétés d'attachement, de décollement et de déviation des jets de fluide en présence de parois fixes. On constate, en effet, qu'un jet de fluide dans une tuyère bidimensionnelle divergente et symétrique ne s'écoule pas symétriquement mais reste attaché à l'une des deux parois, cet attachement, en l'absence de toute dissymétrie géométrique, pouvant se produire indi […] Lire la suite

FONTAINES PULSANTES, physique

  • Écrit par 
  • David QUÉRÉ, 
  • Élie RAPHAËL
  •  • 579 mots

Les surfaces fluides en mouvement – une flamme, des vagues, du sable qui coule – continuent de poser des problèmes remarquables dont l'apparente simplicité est bien trompeuse. Le ressaut hydraulique qui se forme au fond de nos éviers, quand un filet d'eau vient le frapper, est encore mal compris. L'amincissement et la rupture d'un jet de liquide engendrent une cascade d'événements spectaculaires. […] Lire la suite

GÉOLOGIE - Géologie contemporaine

  • Écrit par 
  • Édouard KAMINSKI
  •  • 5 630 mots
  •  • 5 médias

Dans le chapitre « Dynamique des fluides géologiques »  : […] À l'échelle des temps géologiques, les matériaux rocheux s'écoulent comme des fluides très visqueux. La mécanique des fluides s'applique ainsi à l'ensemble des systèmes terrestres, des océans aux aquifères, des laves aux magmas, et du manteau convectif au noyau liquide. Ces écoulements géologiques sont étudiés à l'aide des équations de la mécanique des fluides qui sont résolues à l'aide de calcul […] Lire la suite

HYDRAULIQUE

  • Écrit par 
  • Pierre CORMAULT
  •  • 4 245 mots
  •  • 4 médias

Dans le chapitre « Écoulement des fluides et théorèmes généraux »  : […] Les lois de la mécanique d'un corps solide s'obtiennent en intégrant dans le volume occupé par ce corps les lois de la mécanique du point matériel. D'une manière identique, les lois de l'hydraulique utilisées dans la pratique par les ingénieurs s'obtiennent en intégrant d'une manière exacte ou approchée les lois décrivant le mouvement d'un petit élément de volume fluide. Alors que dans un solide l […] Lire la suite

HYDRODYNAMICA (D. Bernoulli)

  • Écrit par 
  • Bernard PIRE
  •  • 181 mots
  •  • 1 média

Le traité Hydrodynamica , publié en 1738 par Daniel Bernoulli (1700-1782), fonde l'hydrodynamique moderne. Né le 8 février 1700 à Groningue (Hollande), fils du mathématicien Jean Bernoulli (1667-1748), Daniel Bernoulli a effectué la plupart des recherches sur ce sujet lors d'un séjour à Saint-Pétersbourg de 1725 à 1733. Cet ouvrage analyse correctement l'écoulement d'un liquide par le trou d'un ré […] Lire la suite

HYDROLOGIE

  • Écrit par 
  • Pierre HUBERT, 
  • Gaston RÉMÉNIÉRAS
  •  • 9 869 mots
  •  • 12 médias

Dans le chapitre « Le bassin versant »  : […] Si l'on considère une section droite d'un cours d'eau, on peut lui associer un bassin versant, lieu géométrique des points de l'espace géographique où les précipitations sont susceptibles de contribuer au débit observé dans cette section. On définit aisément le bassin versant topographique limité par une ligne de partage des eaux, mais celui-ci peut différer du bassin versant réel à cause des cir […] Lire la suite

INTERPLANÉTAIRE MILIEU

  • Écrit par 
  • Pierre COUTURIER, 
  • Jean-Louis STEINBERG
  •  • 4 644 mots
  •  • 5 médias

Dans le chapitre «  Le mécanisme d'expansion du vent solaire »  : […] L'idée d'une extension de l'atmosphère solaire jusqu'à l'orbite terrestre était donc en gestation dans les années 1950 mais les physiciens ne disposaient pas d'une interprétation théorique de ce phénomène ; par ailleurs les données quantitatives sur les paramètres du fluide en expansion, sur l'aspect continu ou non du processus étaient bien maigres. Les résultats de l'analyse des queues cométaire […] Lire la suite

KANTROWITZ ARTHUR ROBERT (1913-2008)

  • Écrit par 
  • Universalis
  •  • 349 mots

Physicien et ingénieur américain, Arthur Kantrowitz trouva d'importantes applications pratiques à la théorie de la mécanique des fluides. Né le 20 octobre 1913 à New York, Arthur Robert Kantrowitz obtient en 1947 son doctorat à l'université Columbia de New York. Il dirige de 1937 à 1946 la section dynamique des gaz au comité consultatif américain de l'aéronautique (ancêtre de la N.A.S.A.), puis e […] Lire la suite

LIAPOUNOV ALEXANDRE MIKHAÏLOVITCH (1857-1918)

  • Écrit par 
  • Universalis
  •  • 500 mots

Mathématicien et physicien russe, membre de l'Académie des sciences. Après des études à l'université de Saint-Pétersbourg, il est assistant puis professeur à l'université de Kharkov. En 1902, il est nommé professeur à l'université de Saint-Pétersbourg. Élève de P. L. Tchebychev, c'est le représentant le plus remarquable de l'école mathématique fondée par celui-ci. Il a créé une théorie moderne rig […] Lire la suite

MAGNÉTOHYDRODYNAMIQUE (M.H.D.)

  • Écrit par 
  • Jean-Loup DELCROIX
  •  • 4 454 mots
  •  • 14 médias

La magnétohydrodynamique (M.H.D.) est une branche de la physique consacrée à l'étude des mouvements des fluides conducteurs de l'électricité en présence de champs magnétiques. Elle s'applique aux métaux liquides (mercure, métaux alcalins fondus), aux gaz faiblement ionisés et aux plasmas. Lorsqu'un fluide conducteur se déplace dans un champ magnétique, il est le siège d'un champ électrique qui y p […] Lire la suite

MATIÈRE (physique) - État liquide

  • Écrit par 
  • Jean-Louis RIVAIL
  •  • 3 245 mots
  •  • 6 médias

Dans le chapitre « La viscosité des liquides »  : […] La grandeur qui mesure la résistance d'un liquide à l'écoulement, appelée viscosité, est définie par la loi de Poiseuille. D'après cette loi, le débit volumique d V/ dt d'un fluide, dans un tube cylindrique de rayon r , de longueur l , sous l'action d'une différence de pression ΔP entre les extrémités du tube, s'exprime par la relation : où la constante η, qui s'exprime en poises (P), est le coe […] Lire la suite

MOLÉCULAIRES JETS & FAISCEAUX

  • Écrit par 
  • Roger CAMPARGUE
  •  • 5 695 mots
  •  • 3 médias

Dans le chapitre « Jets et faisceaux moléculaires supersoniques (de 0,01 à 40 électronvolts) »  : […] Dans une analyse théorique de 1951, A. Kantrowitz et J. Grey ont suggéré de remplacer l'effusion thermique par une extraction de jet supersonique libre . Un tel jet est formé dans une enceinte sous vide reliée à un réservoir de gaz ou de vapeur à haute pression (par exemple de 1 à 200 bar) à travers une microtuyère généralement cylindrique. Son diamètre D est par exemple de 0,1 mm mais toujours […] Lire la suite

PHYSIQUE - Physique et informatique

  • Écrit par 
  • Claude ROIESNEL
  •  • 6 728 mots

Dans le chapitre « Turbulence  »  : […] Maints systèmes physiques dans l'Univers sont des fluides. Notre compréhension de la Terre, des planètes, des étoiles et des galaxies dépend crucialement de la dynamique des fluides. Cette discipline mathématique est à la base des développements en météorologie, en océanographie et même en astrophysique. L'observation des fluides astronomiques montre une grande richesse de structures dynamiques, […] Lire la suite

PRANDTL LUDWIG (1875-1953)

  • Écrit par 
  • Tom D. CROUCH, 
  • Universalis
  •  • 343 mots

Physicien allemand né le 4 février 1875 à Freising (Bavière), mort le 15 août 1953 à Göttingen. En 1901, Ludwig Prandtl devient professeur de mécanique à l'institut technique d'Hanovre, où il poursuit ses recherches pour fournir une base théorique solide à la mécanique des fluides. De 1904 à 1953, il enseigne la mécanique appliquée à l'université de Göttingen, où il établit une école d'aérodynami […] Lire la suite

Voir aussi

Pour citer l’article

Jean-François DEVILLERS, Claude FRANÇOIS, Bernard LE FUR, « FLUIDES MÉCANIQUE DES », Encyclopædia Universalis [en ligne], consulté le 10 août 2020. URL : http://www.universalis.fr/encyclopedie/mecanique-des-fluides/