MATIÈRE (physique)Plasmas

Carte mentale

Élargissez votre recherche dans Universalis

Réactions nucléaires dans les plasmas

À très haute température, quand on dépasse la dizaine de millions de kelvins, les plasmas constitués de noyaux légers peuvent être le siège de réactions de fusion nucléaire, avec production de noyaux plus lourds et surtout d'énergie. La nécessité d'atteindre des températures très élevées est due à ce que, avant de fusionner sous l'effet des forces nucléaires, les deux noyaux en présence doivent d'abord vaincre les forces de répulsion électrostatique intenses de façon à pouvoir se rapprocher suffisamment pour que les forces nucléaires entrent en jeu. La fusion est la source d'énergie des étoiles, qui brûlent ainsi leur hydrogène pour fabriquer de l'hélium, puis éventuellement des noyaux plus lourds encore. La cohésion de l'étoile est assurée par les forces de gravitation.

L'énergie dégagée par les réactions de fusion nucléaire est bien supérieure, à masses de combustible égales, à l'énergie dégagée par les réactions chimiques. Cette propriété est mise à profit dans les bombes à hydrogène, ou bombes H, ou bombes thermonucléaires, premier exemple de réalisation sur Terre (en 1951) de réactions de fusion pour produire de l'énergie. L'utilisation des réactions de fusion à des fins civiles, comme source quasi inépuisable d'énergie, est à l'origine de l'intensification ultérieure des recherches sur la physique des plasmas. La réaction la plus importante dans ce contexte est la réaction D + T → 4He + n + 17,6 MeV, où D et T représentent respectivement un noyau de deutérium et un noyau de tritium, deux isotopes de l'hydrogène, où 4He désigne un noyau d'hélium 4, également appelé particule α, et où n désigne un neutron. L'énergie de fusion, exprimée en mégaélectronvolts (MeV), peut être convertie en joule à partir de la correspondance 1 MeV = 1,6 × 10–13 J. Deux critères doivent être réalisés pour aboutir à la production d'énergie en quantité suffisante. D'une part, la température du plasma doit être de l'ordre de 108 K, sensiblement supérieure à la température régnant au centre du Soleil, qui est [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 12 pages

Médias de l’article

États de la matière

États de la matière
Crédits : Encyclopædia Universalis France

vidéo

Irving Langmuir et E. D. MacArthur

Irving Langmuir et E. D. MacArthur
Crédits : Encyclopaedia Britannica, Inc

photographie

Sinclair Lewis, Frank Kellogg, Albert Einstein et Irving Langmuir

Sinclair Lewis, Frank Kellogg, Albert Einstein et Irving Langmuir
Crédits : Hulton Getty

photographie

Aurore boréale

Aurore boréale
Crédits : J. A. Davis/ Shutterstock

photographie

Afficher les 4 médias de l'article


Écrit par :

  • : docteur d'État, directeur de recherche au C.N.R.S.

Classification

Autres références

«  MATIÈRE, physique  » est également traité dans :

MATIÈRE (physique) - Vue d'ensemble

  • Écrit par 
  • Jean-Marc LÉVY-LEBLOND
  •  • 2 003 mots

Le mot « matière » cache sous sa généralité abstraite une origine concrète fort éclairante. En latin archaïque, materia appartient à la langue rustique et désigne la substance dont est fait le tronc de l'arbre, en tant qu'elle est productrice (de branches, de feuilles). L'élargissement successif des sens du mot, d'abord dans la langue commune, à des matériaux variés, puis, dans […] Lire la suite

MATIÈRE (physique) - États de la matière

  • Écrit par 
  • Vincent FLEURY
  •  • 5 803 mots
  •  • 4 médias

D'Aristote à Réaumur, au xviiie siècle, la nature des solides ou des fluides a posé de grandes énigmes aux savants de jadis. Les découvertes de plus en plus fines de la science moderne sur l'organisation des molécules et des liaisons atomiques dans les matériaux ou dans les composés étudiés au laboratoire, comm […] Lire la suite

MATIÈRE (physique) - État solide

  • Écrit par 
  • Daniel CALÉCKI
  •  • 8 607 mots
  •  • 13 médias

La matière se présente principalement sous trois états simples : gazeux, liquide et solide. Ce qui distingue l'état solide des deux autres états est l'incapacité d'une masse solide à épouser la forme du récipient dans lequel on la place ; en revanche, un gaz s'empresse d'envahir tout le volume qu'on lui offre et un liquide prend la forme de la partie du récipient qui le contient. Ce qui caractéris […] Lire la suite

MATIÈRE (physique) - État liquide

  • Écrit par 
  • Jean-Louis RIVAIL
  •  • 3 248 mots
  •  • 6 médias

La notion de liquide est une notion familière, l'état liquide étant, avec l'état solide et l'état gazeux, l'un des trois états communs de la matière.On peut étudier un liquide comme une phase condensée fluide. Cela signifie que le liquide a une masse spécifique élevée, proche de celle du solide, et qu'il est aisément déformable, au point d'adapter sa forme à celle des récipients dans lesquels il e […] Lire la suite

MATIÈRE (physique) - État gazeux

  • Écrit par 
  • Henri DUBOST, 
  • Jean-Marie FLAUD
  •  • 8 284 mots
  •  • 9 médias

L'état sous lequel se présente la matière, solide, liquide ou gazeux, dépend des conditions de température et de pression. Suivant l'usage généralement admis, on désigne par gaz tout corps existant dans cet état dans les conditions normales de température et de pression (P0 = 1 atm, T0 = 0 0C), et par vapeur la phase gazeuse d'un corps solide ou liquide dans les mêmes condit […] Lire la suite

MATIÈRE (physique) - Transitions de phase

  • Écrit par 
  • Nino BOCCARA
  •  • 6 912 mots
  •  • 7 médias

Les premières transitions de phase observées ont été des changements d'état tels que la fusion de la glace ou la vaporisation de l'eau. Lors d'un changement d'état, le système, au sens de la thermodynamique, se présente comme la réunion de deux sous-systèmes homogènes possédant des propriétés distinctes. On appelle phase chacun de ces sous-systèmes. Plus préci […] Lire la suite

ANTIMATIÈRE

  • Écrit par 
  • Bernard PIRE, 
  • Jean-Marc RICHARD
  •  • 6 914 mots
  •  • 4 médias

Dans le chapitre « Antimatière en laboratoire »  : […] Les particules de l'espace interplanétaire arrivant dans l'atmosphère y subissent des collisions et modifient ainsi l'énergie des particules qu'elles rencontrent. Si leur vitesse est suffisante, elles peuvent créer des paires électron- positon au cours de ces chocs, en libérant leur énergie cinétique. Ce sont les positons créés par ce processus qui ont été observés par Anderson. C'est seulement en […] Lire la suite

ATOME

  • Écrit par 
  • José LEITE LOPES
  •  • 9 246 mots
  •  • 15 médias

L'atome est le terme ultime de la division de la matière dans lequel les éléments chimiques conservent leur individualité. C'est la plus petite particule d'un élément qui existe à l'état libre ou combiné. On connaît 90 éléments naturels auxquels s'ajoutent le technétium (Tc,  Z  = 43), le prométhéum (Pm, Z  = 61) ainsi que les transuraniens obtenus artificiellement depuis 1940. Les corps simples s […] Lire la suite

BOHR ATOME DE

  • Écrit par 
  • Bernard PIRE
  •  • 370 mots
  •  • 1 média

Deux ans après avoir soutenu sa thèse sur la théorie électronique des métaux, le physicien danois Niels Bohr (1885-1962) écrit en 1913 trois articles fondamentaux qui révolutionnent la compréhension de la structure de la matière. Le premier, paru le 5 avril dans le Philosophical Magazine , est titré « Sur la constitution des atomes et des molécules ». Bohr prend pour point de départ la découvert […] Lire la suite

ATOMIQUE PHYSIQUE

  • Écrit par 
  • Philippe BOUYER, 
  • Georges LÉVI
  •  • 6 703 mots
  •  • 1 média

La physique atomique est née des expériences effectuées à la fin du xix e  siècle qui ont montré que la matière était discontinue et formée d'atomes possédant une structure interne ; celle-ci étant à l'origine des raies observées dans les spectres d'émission et d'absorption du rayonnement par les différents éléments, l'objectif premier de la physique atomique a été de comprendre et d'interpréter […] Lire la suite

Voir aussi

Pour citer l’article

Patrick MORA, « MATIÈRE (physique) - Plasmas », Encyclopædia Universalis [en ligne], consulté le 23 septembre 2021. URL : https://www.universalis.fr/encyclopedie/matiere-physique-plasmas/