ÉNERGIELa notion

Carte mentale

Élargissez votre recherche dans Universalis

Dans toutes les transformations variées qui sont étudiées en physique, la notion d'énergie joue un rôle fondamental. Elle apparaît d'abord en mécanique, où elle signifie capacité de travail.

La première forme d'énergie définie est le travail mécanique : produit scalaire d'une force et d'un déplacement. Un système mécanique pouvant fournir du travail contient du travail en réserve, c'est-à-dire de l'énergie : potentielle, si elle est due à la position des constituants du système dans l'espace ; cinétique, si le corps est en mouvement (pour mouvoir un bateau à voile, on utilise l'énergie cinétique des masses d'air en mouvement).

La loi de conservation de l'énergie domine la physique. Cette loi est vérifiée dans les phénomènes purement mécaniques pour la somme de l'énergie potentielle et de l'énergie cinétique. Cependant, elle semble mise en défaut chaque fois qu'il y a frottement et apparition de chaleur. Pour conserver l'énergie totale d'un système, il faut lui ajouter la quantité de chaleur reçue. La chaleur apparaît alors comme une forme de l'énergie. La thermodynamique étudie plus particulièrement les transformations de chaleur en travail et réciproquement. En réalité, la chaleur n'est pas autre chose que l'énergie cinétique d'agitation des particules qui composent le système. Mais cette agitation est désordonnée. La différence entre chaleur et travail est expliquée par la mécanique statistique ; celle-ci permet de définir une fonction qui mesure le « désordre » d'un état macroscopique d'un système, l'entropie.

Enfin, dans les réactions nucléaires, les énergies mises en jeu sont considérables et l'on constate que la masse des particules (au sens classique) n'est pas conservée. La théorie de la relativité a introduit le concept d'équivalence masse-énergie (E = mc2) et a permis de satisfaire encore au principe de conservation de l'énergie.

La notion d'énergie est éclairée sous un jour nouveau par la mécanique quantique. L'énergie d'un système fini est quantifiée et une valeur de cette énergie caractérise l'état physique dans lequel se trouve le système. L'énergie apparaît alors comme la grandeur physique fondamentale attachée à un système. La connaissance de ce système commence par la connaissance de ses niveaux d'énergie.

Les applications pratiques de la notion d'énergie posent trois sortes de problèmes : celui de la source d'énergie, celui du transport et enfin celui de l'utilisation ; ils donnent toute leur importance aux questions de conversion des énergies. La source n'est, en effet, pas toujours utilisable directement sur place, on doit donc convertir l'énergie fournie sous une autre forme pour la transporter. Il est évident que les aspects économiques ont une importance prépondérante dans le choix des systèmes de conversion d'énergie.

Après avoir rappelé les notions théoriques fondamentales relatives à l'énergie, on décrira ici quelques systèmes de conversion d'énergie parmi les plus utilisés et les plus étudiés. Leur liste ne saurait être exhaustive ; de nouvelles sources d'énergie et de nouveaux systèmes de conversion ont été mis au point grâce à la fusion contrôlée de noyaux légers, au développement des piles à combustibles, à la synthèse photochimique artificielle et à la combustion-fermentation.

Énergie mécanique

On dit qu'une force appliquée à une particule située en M travaille, lorsque cette particule se déplace dans une direction différente de la perpendiculaire à cette force. Si dM est le déplacement de la particule, le travail dW de la force F qui lui est appliquée est, par définition, dW = F . dM.

Le travail est donc une grandeur scalaire dont la dimension est : masse × (longueur)2 × (temps)—2. Les unités les plus courantes de travail sont, dans le système S.I., le joule (J), qui équivaut à (1 kg) × (1 m)2 × (1 s)—2, et, dans le système C . G . S ., on utilise le dyne × (1 cm).

À l'échelle atomique, on utilise souvent l'électron-volt (eV), travail fourni à un électron pour augmenter son potentiel électrique de un volt (1 eV = 1,6 . 10—19 J).

Il est souvent intéressant de caractériser une source d'énergie, ou un moteur, par l'énergie fournie par seconde, ou puissance ; on emploie alors comme unité le watt (W), qui équivaut à un joule par seconde. Une unité pratique, utilisée industriellement, est [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 12 pages

Médias de l’article

Énergie potentielle

Énergie potentielle
Crédits : Encyclopædia Universalis France

dessin

Barrage

Barrage
Crédits : Encyclopædia Universalis France

dessin

Max Planck

Max Planck
Crédits : Hulton Archive/ Getty Images

photographie

Énergie de liaison

Énergie de liaison
Crédits : Encyclopædia Universalis France

graphique

Afficher les 4 médias de l'article


Écrit par :

  • : ancien directeur du laboratoire de physique de l'École normale supérieure

Classification

Autres références

«  ÉNERGIE  » est également traité dans :

ÉNERGIE - Vue d'ensemble

  • Écrit par 
  • Jean MATRICON
  •  • 1 648 mots

Le terme « énergie » est ambigu : son champ sémantique est immense et se décline à travers presque toutes les activités humaines, depuis les ressources psychiques que l'homme va chercher auprès de médiateurs variés jusqu'aux organismes gouvernementaux qui ont pour charge de gérer ses emplois. Le scientifique est plus exigeant quant à la définition qu'il en donne, mais, même dans ce domaine plus re […] Lire la suite

ÉNERGIE - Les ressources

  • Écrit par 
  • Jean-Marie CHEVALIER, 
  • Daniel CLÉMENT, 
  • François MOISAN, 
  • Jean-Pierre TABET
  •  • 6 340 mots
  •  • 1 média

À la fin de l'année 1973, à la suite d'une décision unilatérale de l'Organisation des pays exportateurs de pétrole (O.P.E.P.) qui suivait elle-même un embargo imposé par les pays arabes exportateurs à l'occasion de la guerre du Kippour, le prix mondial du pétrole brut était multiplié par quatre en quelques mois. Le premier « choc pétrolier », comme on l'appela, […] Lire la suite

ANTIMATIÈRE

  • Écrit par 
  • Bernard PIRE, 
  • Jean-Marc RICHARD
  •  • 6 914 mots
  •  • 4 médias

Dans le chapitre « Antimatière en laboratoire »  : […] Les particules de l'espace interplanétaire arrivant dans l'atmosphère y subissent des collisions et modifient ainsi l'énergie des particules qu'elles rencontrent. Si leur vitesse est suffisante, elles peuvent créer des paires électron- positon au cours de ces chocs, en libérant leur énergie cinétique. Ce sont les positons créés par ce processus qui ont été observés par Anderson. C'est seulement en […] Lire la suite

ARCHITECTURE ÉCOLOGIQUE ou ARCHITECTURE DURABLE

  • Écrit par 
  • Dominique GAUZIN-MÜLLER
  •  • 5 078 mots
  •  • 1 média

Dans le chapitre « Maîtrise de l'énergie : profiter du gisement de négaWatts »  : […] L ' énergie la moins chère restant celle qui n'est pas consommée, la stratégie de l'association négaWatt (www.negawatt.org), animée par un collège de 23 experts et praticiens de l'énergie, est très judicieuse : ce scénario combine sobriété et efficacité avant de recourir aux énergies renouvelables. La sobriété implique à la fois la responsabilisation des usagers dans leurs comportements quotidiens […] Lire la suite

ATMOSPHÈRE - Thermodynamique

  • Écrit par 
  • Jean-Pierre CHALON
  •  • 7 724 mots
  •  • 7 médias

Dans le chapitre « Physique des changements d’état de l’eau »  : […] Lorsque la tension de vapeur e atteint une valeur e s , dite tension de vapeur saturante, les échanges à l’interface entre de la vapeur et du liquide sont équilibrés, la vapeur ne peut pas accueillir plus de molécules qu’elle n’en contient déjà, on dit qu’elle est saturée par rapport à l’eau liquide – ce qui correspond à une humidité relative HU (p. 100 ) =  100  e / e s  = 100 p. 100 . Il en es […] Lire la suite

ATOME

  • Écrit par 
  • José LEITE LOPES
  •  • 9 246 mots
  •  • 15 médias

Dans le chapitre « Atome et spectroscopie »  : […] L'étude des spectres des éléments et des corps composés constitue la source essentielle des informations sur la structure quantique des atomes et des molécules. Cette étude repose sur la détermination de la fréquence des raies spectrales qui correspondent à des transitions entre états quantiques, à quoi s'ajoutent la détermination de l'intensité des raies et la considération des règles de sélect […] Lire la suite

ATOMIQUE PHYSIQUE

  • Écrit par 
  • Philippe BOUYER, 
  • Georges LÉVI
  •  • 6 703 mots
  •  • 1 média

Dans le chapitre « La structure dite « grossière ». Le tableau périodique »  : […] Le premier problème auquel ont été confrontés les physiciens atomistes a été de chercher à résoudre l'équation de Schrödinger pour un système formé de N électrons soumis à la force coulombienne attractive du noyau et à la force coulombienne répulsive qui s'exerce entre chaque paire d'électrons. Il n'existe pas de solution exacte à un aussi formidable problème, et toute l'intelligence des physici […] Lire la suite

CASIMIR EFFET

  • Écrit par 
  • Bernard PIRE
  •  • 330 mots

L'effet Casimir est l'une des plus remarquables prédictions de la théorie quantique, puisqu'il touche à la nature même de l'état fondamental de l'électrodynamique, ce qu'il est convenu d'appeler le « vide quantique ». Contrairement au vide classique, proche du néant, l'état de plus basse énergie d'une théorie quantique est peuplé d'états virtuels qu'une excitation peut éventuellement révéler : c' […] Lire la suite

CHALEUR

  • Écrit par 
  • Paul GLANSDORFF
  •  • 996 mots

La notion de chaleur telle qu'elle résulte de la sensation de chaud et de froid remonte aux époques les plus reculées. Toutefois, elle n'appartint à la science qu'à partir du xviii e  siècle, lorsque Lavoisier et Laplace reconnurent conjointement en elle « une grandeur susceptible d'accroissement et de diminution », et donc accessible à la mesure. La première tentative d'interprétation physique as […] Lire la suite

CHIMIE - Histoire

  • Écrit par 
  • Élisabeth GORDON, 
  • Jacques GUILLERME, 
  • Raymond MAUREL
  •  • 11 167 mots
  •  • 7 médias

Dans le chapitre « La chimie et les secteurs socio-économiques »  : […] Si la chimie a comme but essentiel d'améliorer les connaissances à l'intérieur de son domaine propre et de favoriser l'expansion de l'industrie chimique, elle intervient également dans la résolution de problèmes socio-économiques importants. Elle joue en effet un grand rôle dans le domaine de l' énergie : d'abord, en tentant de mettre au point des procédés plus économiques pour l'industrie chimiqu […] Lire la suite

Voir aussi

Pour citer l’article

Julien BOK, « ÉNERGIE - La notion », Encyclopædia Universalis [en ligne], consulté le 28 juin 2022. URL : https://www.universalis.fr/encyclopedie/energie-la-notion/