ÉNERGIELa notion
Carte mentale
Élargissez votre recherche dans Universalis
Chaleur et thermodynamique
Énergie interne
La thermodynamique s'intéresse aux échanges d'énergie entre systèmes macroscopiques. À l'échelle atomique, ces systèmes sont composés de particules (molécules) douées d'énergie cinétique, et aussi d'énergie potentielle mutuelle représentant l'interaction de ces particules entre elles. On appelle énergie interne cette énergie associée à la mécanique interne du système à l'échelle microscopique. La description détaillée d'un état du système met en jeu un grand nombre des variables (positions de toutes les molécules ; leurs vitesses ; leurs orientations, etc.). Cependant, à l'échelle moins fine qui est la nôtre, les propriétés du système sont suffisamment bien décrites par un petit nombre de variables, dites macroscopiques (le volume, la masse, la pression, la température, l'indice de réfraction, etc.). L'énergie interne d'un système à l'équilibre apparaît alors comme une fonction des variables macroscopiques d'état.
Travail
Le travail est de l'énergie échangée par un système avec l'extérieur sous forme ordonnée. C'est-à-dire que les particules sont toutes poussées dans un même sens sous l'influence de forces extérieures : électrons sous l'influence d'un champ électrique, molécules sous la poussée d'un piston, etc. Ce travail peut être de diverse nature. Il peut s'agir, par exemple, d'un travail électrique : le système est traversé par un courant électrique qui entre par une borne et sort par une autre. Un générateur extérieur fait régner entre ces bornes une différence de potentiel électrique U et débite un courant d'intensité I. Le travail reçu par le système pendant un temps dt est alors dW = UI dt. Un cas fréquent pour les fluides est le travail des forces de pression. Un fluide occupant un volume V est soumis à une pression extérieure p0, si le volume varie de dV, le travail reçu par le système est dW = — p0dV. Si la pression interne p est égale à p0, le système est pratiquement à l'équilibre et la transformation est dite réversible ; le travail reçu est alors — pdV.
Chaleur
Un transfert d'énergie se fait sous forme de chaleur lorsque les molécules du système interagissent de façon désordonnée avec le milieu extérieur. Ainsi, lorsqu'on place deux corps, l'un chaud et l'autre froid, en contact, les molécules du corps chaud, dont l'énergie cinétique d'agitation est plus grande, frappent les molécules du corps froid et leur communiquent une partie de leur énergie, égalisant ainsi les températures. La manière la plus usuelle de fournir de la chaleur à un système est donc d'élever sa température. Mais ce n'est pas la seule. Il faut, par exemple, fournir de la chaleur pour faire bouillir de l'eau ; tant que dure l'ébullition, la température reste constante (100 0C). La quantité de chaleur communiquée sert à augmenter l'énergie potentielle d'interaction mutuelle des molécules d'eau jusqu'à ce qu'elles se séparent et forment de la vapeur.
Les transformations du travail en chaleur et de la chaleur en travail sont régies par les lois de la thermodynamique.
Les principes de la thermodynamique
Le premier principe, ou principe de l'équivalence, énonce l'équivalence du travail et de la chaleur. Dans une transformation fermée, où le système revient à un état macroscopique identique à celui dont il est parti, l'énergie interne n'a pas varié. Si le système a reçu du travail, il a cédé de la chaleur et, s'il a reçu de la chaleur, il a cédé du travail. Dans une transformation quelconque, on peut écrire ΔU = W + Q, où, en valeurs algébriques, W est le travail reçu, et Q la chaleur reçue.
Ce principe énonce que le travail et la chaleur sont deux formes d'une même grandeur physique : l'énergie.
Le second principe, ou principe de Carnot, exprime que la transformation de chaleur en travail est plus difficile que la transformation inverse. On peut, par exemple, utiliser l'énoncé de Kelvin : un moteur ne peut produire du travail à partir d'une seule source de chaleur, ce qui veut dire qu'un système subissant une transformation monotherme (échange de chaleur avec une seule source à température T) ne peut que transformer du travail en chaleur et non l'inverse.
Un moteur peut fournir du travail en échangeant de la chaleur avec deux sources à températures différentes T1 et T2 (T1 > T2). Il prend alors une quantité de chaleur Q1 à T1, cède une certaine quantité Q2 à T2 et transforme le reste en travail W (moteur ditherme). Le rendement d'un tel moteur est par définition la qua [...]
1
2
3
4
5
…
pour nos abonnés,
l’article se compose de 12 pages
Écrit par :
- Julien BOK : ancien directeur du laboratoire de physique de l'École normale supérieure
Classification
Autres références
« ÉNERGIE » est également traité dans :
ÉNERGIE - Vue d'ensemble
Le terme « énergie » est ambigu : son champ sémantique est immense et se décline à travers presque toutes les activités humaines, depuis les ressources psychiques que l'homme va chercher auprès de médiateurs variés jusqu'aux organismes gouvernementaux qui ont pour charge de gérer ses emplois. Le scientifique est plus exigeant quant à la définition qu'il en donne, mais, même dans ce domaine plus re […] Lire la suite
ÉNERGIE - Les ressources
À la fin de l'année 1973, à la suite d'une décision unilatérale de l'Organisation des pays exportateurs de pétrole (O.P.E.P.) qui suivait elle-même un embargo imposé par les pays arabes exportateurs à l'occasion de la guerre du Kippour, le prix mondial du pétrole brut était multiplié par quatre en quelques mois. Le premier « choc pétrolier », comme on l'appela, […] Lire la suite
ANTIMATIÈRE
Dans le chapitre « Antimatière en laboratoire » : […] Les particules de l'espace interplanétaire arrivant dans l'atmosphère y subissent des collisions et modifient ainsi l'énergie des particules qu'elles rencontrent. Si leur vitesse est suffisante, elles peuvent créer des paires électron- positon au cours de ces chocs, en libérant leur énergie cinétique. Ce sont les positons créés par ce processus qui ont été observés par Anderson. C'est seulement en […] Lire la suite
ARCHITECTURE ÉCOLOGIQUE ou ARCHITECTURE DURABLE
Dans le chapitre « Maîtrise de l'énergie : profiter du gisement de négaWatts » : […] L ' énergie la moins chère restant celle qui n'est pas consommée, la stratégie de l'association négaWatt (www.negawatt.org), animée par un collège de 23 experts et praticiens de l'énergie, est très judicieuse : ce scénario combine sobriété et efficacité avant de recourir aux énergies renouvelables. La sobriété implique à la fois la responsabilisation des usagers dans leurs comportements quotidiens […] Lire la suite
ATMOSPHÈRE - Thermodynamique
Dans le chapitre « Physique des changements d’état de l’eau » : […] Lorsque la tension de vapeur e atteint une valeur e s , dite tension de vapeur saturante, les échanges à l’interface entre de la vapeur et du liquide sont équilibrés, la vapeur ne peut pas accueillir plus de molécules qu’elle n’en contient déjà, on dit qu’elle est saturée par rapport à l’eau liquide – ce qui correspond à une humidité relative HU (p. 100 ) = 100 e / e s = 100 p. 100 . Il en es […] Lire la suite
ATOME
Dans le chapitre « Atome et spectroscopie » : […] L'étude des spectres des éléments et des corps composés constitue la source essentielle des informations sur la structure quantique des atomes et des molécules. Cette étude repose sur la détermination de la fréquence des raies spectrales qui correspondent à des transitions entre états quantiques, à quoi s'ajoutent la détermination de l'intensité des raies et la considération des règles de sélect […] Lire la suite
ATOMIQUE PHYSIQUE
Dans le chapitre « La structure dite « grossière ». Le tableau périodique » : […] Le premier problème auquel ont été confrontés les physiciens atomistes a été de chercher à résoudre l'équation de Schrödinger pour un système formé de N électrons soumis à la force coulombienne attractive du noyau et à la force coulombienne répulsive qui s'exerce entre chaque paire d'électrons. Il n'existe pas de solution exacte à un aussi formidable problème, et toute l'intelligence des physici […] Lire la suite
CASIMIR EFFET
L'effet Casimir est l'une des plus remarquables prédictions de la théorie quantique, puisqu'il touche à la nature même de l'état fondamental de l'électrodynamique, ce qu'il est convenu d'appeler le « vide quantique ». Contrairement au vide classique, proche du néant, l'état de plus basse énergie d'une théorie quantique est peuplé d'états virtuels qu'une excitation peut éventuellement révéler : c' […] Lire la suite
CHALEUR
La notion de chaleur telle qu'elle résulte de la sensation de chaud et de froid remonte aux époques les plus reculées. Toutefois, elle n'appartint à la science qu'à partir du xviii e siècle, lorsque Lavoisier et Laplace reconnurent conjointement en elle « une grandeur susceptible d'accroissement et de diminution », et donc accessible à la mesure. La première tentative d'interprétation physique as […] Lire la suite
CHIMIE - Histoire
Dans le chapitre « La chimie et les secteurs socio-économiques » : […] Si la chimie a comme but essentiel d'améliorer les connaissances à l'intérieur de son domaine propre et de favoriser l'expansion de l'industrie chimique, elle intervient également dans la résolution de problèmes socio-économiques importants. Elle joue en effet un grand rôle dans le domaine de l' énergie : d'abord, en tentant de mettre au point des procédés plus économiques pour l'industrie chimiqu […] Lire la suite
Voir aussi
Pour citer l’article
Julien BOK, « ÉNERGIE - La notion », Encyclopædia Universalis [en ligne], consulté le 18 juin 2022. URL : https://www.universalis.fr/encyclopedie/energie-la-notion/