AÉRODYNAMIQUE

Carte mentale

Élargissez votre recherche dans Universalis

Métrologie et moyens de qualification des écoulements

La mesure des forces exercées sur une maquette est effectuée au moyen de „balances“ : ensemble de capteurs qui mesurent les efforts subis par le véhicule testé via des dynamomètres. Ces balances ont des architectures très variées en fonction du véhicule testé ; les plus petites ne font que quelques centimètres cubes de volume et peuvent être installées dans la maquette elle-même.

La cartographie du champ aérodynamique est mise en évidence par des procédés tels que la tomoscopie laser consistant à illuminer l'écoulement, dans lequel on a introduit de la fumée, par un plan de lumière laser intense. Les écoulements transsoniques et supersoniques peuvent être visualisés par des procédés optiques fondés sur la loi de Biot et Arago reliant la densité du milieu à l'indice de réfraction : il s'agit de l'ombroscopie, de la strioscopie et de l'interférométrie. L'écoulement à la paroi du véhicule est visualisé en recouvrant la maquette d'un enduit qui, entraîné sous l'effet du frottement, révèle les lignes de décollement et les zones de départ des tourbillons.

Visualisation aérodynamique en soufflerie sur un avion de combat

Photographie : Visualisation aérodynamique en soufflerie sur un avion de combat

Visualisation par enduit visqueux coloré de l'écoulement aérodynamique sur la maquette d'un avion de combat futur sans pilote en soufflerie subsonique: par frottement, l'écoulement entraîne les particules contenues dans l'enduit gras étalé sur la maquette. 

Crédits : ONERA

Afficher

La pression locale à la paroi est mesurée via des orifices de petit diamètre reliés par des tubulures à des capteurs (ou transducteurs) dont il existe un grand nombre de types fondés sur des principes physiques différents (capteurs résistifs, capacitifs, piézo-électrique, à réluctance variable). Les maquettes peuvent ainsi être équipées de plusieurs centaines d'orifices, ce qui rend leur fabrication particulièrement coûteuse. Une nouvelle technique utilisant des peintures sensibles à la pression (dites PSP) permet d'éviter un équipement aussi complexe. La maquette est alors enduite d'une peinture qui, éclairée par une source convenable, renvoie une lumière dont l'intensité est directement liée à la pression locale sur la paroi. Le flux de chaleur est mesuré par des techniques dites calorimétriques, qui utilisent des thermocouples ou des films résistifs mesurant l'échauffement local de la paroi. Cette technique exigeant un équipement complexe des maquettes tend à être remplacée par la thermographie infrarouge consistant à déduire l'échauffement de la paroi par analyse de l'image infrarouge de la maquette. ''

Visualisation aérodynamique par peinture sensible à la pression

Photographie : Visualisation aérodynamique par peinture sensible à la pression

Cette maquette d'un concept de moteur (Aerospike) destiné au lanceur expérimental réutilisable Venture Star de la N.A.S.A. est recouverte d'une peinture luminescente sensible à la pression: en soufflerie, l'intensité de la lumière est inversement proportionnelle à la pression de l'air. 

Crédits : ONERA

Afficher

Les grandeurs de champ (vitesse, pression, nombre de Mach, température) sont déterminées au moyen de sondes allant du simple tube de Pitot mesurant la pression d'arrêt locale aux sondes multitrous dont l'embout de mesure peut comporter plus de vingt orifices pour permettre la détermination de la direction du vecteur vitesse sous des angles largement variables. Pour explorer le champ aérodynamique autour de la maquette, les sondes sont fixées sur des dispositifs explorateurs permettant des déplacements précis et préprogrammés selon les trois directions de l'espace. L'acquisition des mesures et leur traitement se font pratiquement en temps réel grâce aux moyens de calcul puissants dont on dispose aujourd'hui. Les fluctuations turbulentes à haute fréquence sont mesurées par des fils ou films chauds constitués d'un élément résistif de très faible dimension (fil de diamètre de quelques micromètres) à temps de réponse excessivement court (de l'ordre de quelques microsecondes).

Les techniques optiques, fondées pour la plupart sur des sources laser, permettent une description quasi exhaustive d'un écoulement en évitant l'introduction de sondes matérielles perturbatrices. Des techniques comme la vélocimétrie laser Doppler (LDV, ou Laser Doppler Velocimetry) ou la vélocimétrie par images de particules (PIV pour Particle Image Velocimetry) déterminent la vitesse de très fines particules injectées dans l'écoulement en amont de la zone d'essai. Elles supposent que les particules sont assez petites pour être entraînées à la vitesse de l'écoulement, ce qui peut ne pas être le cas dans les régions de variation très rapide de la vitesse (traversée d'une onde de choc par exemple) : on parle d'erreur de traînage de la particule. Les méthodes dites de diffusion fondées sur l'interaction entre la lumière et la matière effectuent une mesure sur les molécules mêmes du gaz ce qui évite d'avoir recours à des particules. Il s'agit de la diffusion Raman, de la diffusion Rayleigh, etc. Dans la fluorescence induite par faisceau électronique (ou FFE), les molécules sont excitées par un faisceau d'électrons intense. La méthode donne aussi des visualisations très specta [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 12 pages

Médias de l’article

Aérodynamique: simulation numérique sur un avion Falcon

Aérodynamique: simulation numérique sur un avion Falcon
Crédits : ONERA

photographie

Écoulement aérodynamique

Écoulement aérodynamique
Crédits : ONERA

photographie

Soufflerie transsonique S1, Modane

Soufflerie transsonique S1, Modane
Crédits : ONERA

photographie

Visualisation aérodynamique en soufflerie sur un avion de combat

Visualisation aérodynamique en soufflerie sur un avion de combat
Crédits : ONERA

photographie

Afficher les 7 médias de l'article


Écrit par :

  • : professeur associé à l'université de Paris-Ouest-Nanterre-La Défense
  • : directeur de recherche émérite à l'Office national d'études et de recherches aérospatiales (O.N.E.R.A.)
  • : chef d'unité de recherche à l'Office national d'études et de recherches aérospatiales (O.N.E.R.A.)

Autres références

«  AÉRODYNAMIQUE  » est également traité dans :

AUTOMOBILE - Conception

  • Écrit par 
  • Jean-Paul MANCEAU, 
  • Alfred MOUSTACCHI, 
  • Jean-Pierre VÉROLLET
  •  • 10 532 mots
  •  • 7 médias

Dans le chapitre « Contraintes géométriques liées à la sécurité et à l'aérodynamisme »  : […] Pour protéger les occupants, il faut loger, d'une part, une structure périphérique très résistante qui se déforme progressivement pour absorber l'énergie du choc sans déformer l'habitacle et, d'autre part, des équipements pour absorber l'énergie cinétique des occupants. Pour protéger les piétons, qui constituent une proportion plus importante des victimes de la circulation depuis que la protectio […] Lire la suite

AVIATION - Avions civils et militaires

  • Écrit par 
  • Yves BROCARD
  •  • 9 438 mots
  •  • 21 médias

Dans le chapitre « Développements et perspectives »  : […] Des progrès sont constamment réalisés et sont encore attendus dans tous les domaines concernés : aérodynamique, matériaux, commandes de vol et avionique, motorisation, armement, et furtivité. Du point de vue aérodynamique, les recherches tendent à augmenter la portance maximale utilisable, à étendre le domaine de vol des avions – surtout pour les avions de combat – et à diminuer la traînée. Ainsi, […] Lire la suite

AVIATION - Hélicoptères

  • Écrit par 
  • Louis François LEGRAND, 
  • Pierre ROUGIER
  •  • 3 115 mots
  •  • 7 médias

Dans le chapitre « Principe aérodynamique »  : […] Toute poussée aérodynamique est égale à la quantité de mouvement communiquée à l'air par unité de temps : F =  q . ΔV (F est la poussée, q  le débit d'air intéressé par le rotor, ΔV la variation de vitesse verticale qu'il subit). On en déduit que, au rendement près, la puissance nécessaire est : P = F. ΔV/2. Pour économiser la puissance, il faut donc associer faible variation de vitesse et gros dé […] Lire la suite

BALISTIQUE

  • Écrit par 
  • Jean GARNIER
  •  • 2 104 mots
  •  • 2 médias

Dans le chapitre « Trajectoire balistique des obus »  : […] Pour écrire l'équation de la trajectoire d'un projectile tiré par un canon, il suffit d'appliquer le principe fondamental de la dynamique : la somme des forces extérieures appliquées au projectile est égale au produit de sa masse par la dérivée du vecteur vitesse V g du centre de gravité (F =  m  ( dV g / dt )) et la somme des moments des forces extérieures appliquées au projectile par rapport au […] Lire la suite

COANDA EFFET

  • Écrit par 
  • Bertrand DREYFUS
  •  • 562 mots

Étrange phénomène de la mécanique des fluides, découvert par hasard, à la suite d'un contretemps, au cours d'une expérience d'aéronautique, par l'ingénieur aérodynamicien roumain Henri Coanda (1886-1972), qui lui donna son nom. L'effet Coanda se présente de la manière suivante : lorsqu'un fluide (aussi bien un gaz qu'un liquide) sort d'un récipient par un orifice ou un tuyau, une partie de ce flui […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Équations non linéaires

  • Écrit par 
  • Claude BARDOS
  •  • 10 861 mots
  •  • 3 médias

Dans le chapitre « Les équations de Navier-Stokes »  : […] Le chapitre précédent était consacré aux systèmes hyperboliques non linéaires, domaine où la différence entre le comportement des problèmes linéaires et les comportements des problèmes non linéaires apparaît de manière très évidente. Mais ces systèmes présentent les inconvénients suivants : Il n'existe que des résultats partiels et la plupart des questions restent largement ouvertes. Les applicati […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Sources et applications

  • Écrit par 
  • Martin ZERNER
  •  • 6 319 mots
  •  • 1 média

Dans le chapitre « Équations qui changent de type »  : […] L'équation de Tricomi : est hyperbolique dans le demi-plan x 2   […] Lire la suite

EIFFEL GUSTAVE (1832-1923)

  • Écrit par 
  • Frédéric SEITZ
  •  • 1 599 mots
  •  • 5 médias

Dans le chapitre « L'homme de science »  : […] C'est à la météorologie que Gustave Eiffel va d'abord rendre de grands services. Utilisant une station qui a été installée au sommet de la Tour en 1890 par le Bureau central de météorologie, il effectue des relevés de température, de pression atmosphérique, de pluviosité, de vitesse et de direction des vents. Ces travaux – complétés par les observations auxquelles il procède dans des stations qu […] Lire la suite

KELDYCH MSTISLAV (1911-1978)

  • Écrit par 
  • Boris ROUMIANTSEV
  •  • 592 mots

Organisateur de la recherche scientifique en U.R.S.S., Mstislav Vsevolodovitch Keldych a effectué de nombreux travaux en mathématique et en mécanique, et son nom est lié à de multiples réalisations techniques. Keldych est né le 10 février 1911 à Riga. Son père était ingénieur-constructeur. En 1931, il entre à l'Institut central d'aérodynamisme N. Joukovski, après des études de physique et de math […] Lire la suite

MACH ERNST (1838-1916)

  • Écrit par 
  • Michel PATY
  •  • 4 136 mots
  •  • 1 média

Dans le chapitre « Expériences en optique et sur la propagation des ondes »  : […] Les recherches de Mach sur la propagation des ondes et sur la dynamique des gaz ont un lien avec ses travaux de psychophysiologie : il les aborda comme portant sur des faits perceptibles à l'œil humain, et il s'efforça, pour visualiser les phénomènes aérodynamiques, de dépasser l'emploi de plaques enduites de suie en mettant au point une technique expérimentale raffinée (interféromètre de Mach-Zeh […] Lire la suite

Voir aussi

Pour citer l’article

Bruno CHANETZ, Jean DÉLERY, Jean-Pierre VEUILLOT, « AÉRODYNAMIQUE », Encyclopædia Universalis [en ligne], consulté le 19 janvier 2022. URL : https://www.universalis.fr/encyclopedie/aerodynamique/