RAYONNEMENT COSMIQUERayons cosmiques

Carte mentale

Élargissez votre recherche dans Universalis

Les rayons cosmiques sont des noyaux atomiques et des particules élémentaires qui voyagent dans l'espace à des vitesses voisines de celle de la lumière. Certains d'entre eux s'approchent suffisamment de la Terre pour être détectés par des instruments placés dans des satellites en orbite terrestre ou dans des sondes spatiales. D'autres pénètrent dans l'atmosphère terrestre, entrent en collision avec des noyaux d'oxygène ou d'azote, et produisent des générations successives de particules secondaires qui peuvent atteindre le niveau de la mer et parfois s'enfoncer profondément dans le sol (fig. 1). Ces proliférations des rayons cosmiques dans l'atmosphère sont appelées « grandes gerbes ». Les rayons cosmiques sont donc de deux types : primaires et secondaires.

Génération d'une grande gerbe

Dessin : Génération d'une grande gerbe

Génération d'une grande gerbe. Un rayon cosmique primaire rencontre un noyau d'oxygène ou d'azote de l'atmosphère et produit une cascade de particules, appelée grande gerbe. Une fraction des particules qui appartiennent à la composante « dure » atteint le sol et y pénètre... 

Crédits : Encyclopædia Universalis France

Afficher

Les rayons cosmiques primaires sont l'unique échantillon de matière qui nous parvienne d'au-delà du système solaire. Ils sont constitués en grande majorité de noyaux d'atomes, chargés positivement (étant donné leur vitesse élevée, ces noyaux ont perdu leur cortège électronique) ; toutes les espèces chimiques, de l'hydrogène à l'uranium, sont représentées. Seulement 1 p. 100 environ des rayons cosmiques primaires sont des électrons. Les positrons et les antiprotons sont encore plus rares.

La caractéristique la plus spectaculaire des rayons cosmiques primaires est l'énergie énorme qu'ils sont susceptibles de transporter individuellement : un seul noyau – d'hydrogène, par exemple – peut véhiculer jusqu'à quelques centaines de milliards de milliards d'électronvolts, soit quelques dizaines de joules, c'est-à-dire une énergie macroscopique qui suffirait à soulever de plusieurs mètres un volume de l'Encyclopædia Universalis ! Cependant, la majorité des rayons cosmiques primaires qui ont été observés jusqu'alors ont des énergies de quelques milliards d'électronvolts seulement. Ils représentent néanmoins dans l'Univers une population très privilégiée : en effet, si, dans le gaz interstellaire, moins d'une particule sur 10 millions est un rayon cosmique, l'énergie moyenne, par unité de volume, de l'ensemble des rayons cosmiques est pourtant sensiblement égale à celle du gaz interstellaire – ce qui n'est probablement pas un hasard. Une population infime de particules s'est donc approprié une part substantielle de l'énergie disponible ; par conséquent, l'étude de ces particules constitue la pierre angulaire de l'astrophysique des hautes énergies.

Depuis la fin des années 1960, l'extraordinaire développement de l'astrophysique des hautes énergies a révolutionné l'astronomie et l'astrophysique. Ce qui caractérise cette nouvelle astrophysique, c'est que, à travers les « fenêtres » de longueurs d'onde qui ont été ouvertes sur l'Univers (domaines radio, infrarouge, ultraviolet, rayons X et gamma), des objets d'un type nouveau ont été découverts qui émettent d'énormes quantités d'énergie ; on a pu ainsi obtenir la preuve indirecte que les rayons cosmiques sont partout présents dans l'Univers, et qu'ils sont associés à des événements d'une extrême violence. Dans ces objets (radiogalaxies, quasars, pulsars, étoiles binaires X, sources gamma à rafales), des conditions physiques extrêmes, totalement inaccessibles en laboratoire, se sont révélées, et les rayons cosmiques paraissent constituer une composante importante de ces systèmes.

Messagers des événements violents de l'Univers, les rayons cosmiques primaires jouent aussi un rôle en physique des particules élémentaires, comme outils de sondage des noyaux et des particules les constituant, car leur énergie est très supérieure à celles qui peuvent être obtenues avec les plus grands accélérateurs de particules. Bien avant la construction de ceux-ci, c'est parmi les rayons cosmiques secondaires qu'on a découvert la plupart des particules élémentaires connues à la fin des années 1950 : positron – ou électron positif –, en 1932 ; mésons μ – muons – positif et négatif, entre 1933 et 1938 ; mésons π – pions – positif et négatif, en 1947 ; hypérons quelques années plus tard. C'est aussi dans les grandes gerbes [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 10 pages

Médias de l’article

Génération d'une grande gerbe

Génération d'une grande gerbe
Crédits : Encyclopædia Universalis France

dessin

Aurore polaire

Aurore polaire
Crédits : George Lepp/ Getty Images

photographie

Rapport des abondances des éléments entre R.C.S et M.G.L.

Rapport des abondances des éléments entre R.C.S et M.G.L.
Crédits : Encyclopædia Universalis France

graphique

Flux des protons

Flux des protons
Crédits : Encyclopædia Universalis France

graphique

Afficher les 8 médias de l'article


Écrit par :

  • : docteur ès sciences, ingénieur physicien à l'Institut de recherche sur les lois fondamentales de l'Univers du Commissariat à l'énergie atomique
  • : directeur de recherche émérite au CNRS, centre de physique théorique de l'École polytechnique, Palaiseau

Classification

Autres références

«  RAYONNEMENT COSMIQUE  » est également traité dans :

RAYONNEMENT COSMIQUE - Vue d'ensemble

  • Écrit par 
  • Marc LACHIÈZE-REY
  •  • 1 359 mots

Le Soleil et les étoiles rayonnent : ils émettent quelque chose qui nous parvient et que nous pouvons détecter. Dans le langage commun, le rayonnement concerne la plupart du temps la chaleur ou la lumière. Pour le physicien, c'est un peu différent. De son point de vue, la chaleur se « propage » de trois manières : si la conduction est véritablement un transfert de chaleur, la […] Lire la suite

RAYONNEMENT COSMIQUE - Rayons X cosmiques

  • Écrit par 
  • Monique ARNAUD, 
  • Robert ROCCHIA, 
  • Robert ROTHENFLUG
  •  • 6 550 mots
  •  • 10 médias

Opaque aux rayons X, l'atmosphère terrestre empêche l'observation des photons X extraterrestres depuis le sol. La date de naissance de l'astronomie des rayons X peut être située le 18 juin 1962, lorsqu'un détecteur sensible à ce type de rayonnement, placé à bord d'une fusée-sonde de la N.A.S.A., découvrait l'existence d'une source X située hors du système […] Lire la suite

RAYONNEMENT COSMIQUE - Rayons gamma cosmiques

  • Écrit par 
  • François LEBRUN, 
  • Robert MOCHKOVITCH, 
  • Jacques PAUL
  •  • 8 032 mots
  •  • 3 médias

Les rayons gamma cosmiques, photons les plus énergétiques du rayonnement électromagnétique, signent les événements les plus violents de l'Univers. Bloqués par les hautes couches de l'atmosphère terrestre, ils sont détectés presque exclusivement à bord de véhicules spatiaux. L'astronomie des rayons gamma couvre un im […] Lire la suite

ONDES GRAVITATIONNELLES

  • Écrit par 
  • Bernard PIRE
  •  • 6 834 mots
  •  • 6 médias

Dans le chapitre « Détection directe d’ondes gravitationnelles »  : […] Une onde sonore modifie la pression de l’air, ce qui peut faire vibrer le tympan d’un spectateur ; une onde électromagnétique fait apparaître ou modifie le champ électromagnétique présent à un endroit, ce qui peut mettre en mouvement des charges électriques dans une antenne ; une onde gravitationnelle fait varier la métrique de l’espace-temps et donc modifie les distances. Cette onde balaie l’esp […] Lire la suite

Voir aussi

Pour citer l’article

Lydie KOCH-MIRAMOND, Bernard PIRE, « RAYONNEMENT COSMIQUE - Rayons cosmiques », Encyclopædia Universalis [en ligne], consulté le 18 mai 2022. URL : https://www.universalis.fr/encyclopedie/rayonnement-cosmique-rayons-cosmiques/