DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) Théorie linéaire

Carte mentale

Élargissez votre recherche dans Universalis

Problèmes de régularité

On a déjà signalé que si P est un opérateur elliptique à coefficients analytiques et u une distribution vérifiant l'équation (2), u est analytique sur tout ouvert où f l'est. De plus, cette propriété caractérise les opérateurs elliptiques.

On dit que l'opérateur P est hypoelliptique si toute u vérifiant (2) est indéfiniment différentiable sur tout ouvert où le second membre f est indéfiniment différentiable.

Dans sa thèse, Hörmander a donné la caractérisation suivante des opérateurs hypoelliptiques à coefficients constants :

Pour tout α différent de 0 on a :

La dérivée est évidemment prise par rapport à ξ : c'est la seule variable dont dépend P puisque les coefficients sont constants. L'intervention de ces dérivées est assez naturelle du fait qu'on cherche à localiser les propriétés de u en multipliant cette distribution par une fonction indéfiniment différentiable à support borné. On utilise alors la généralisation de la formule de Leibniz, valable pour tout opérateur différentiel linéaire :
où β ! désigne le produit des factorielles de βi.

Pour les opérateurs à coefficients variables (indéfiniment différentiables), on ne connaît que des conditions suffisantes d'hypoellipticité. Une de ces conditions s'exprime sur les opérateurs « à coefficients gelés », c'est-à-dire les opérateurs à coefficients constants obtenus, pour chaque point y, en remplaçant les coefficients variables b par leur valeur b(y) désormais fixée. La condition est que chacun de ces opérateurs soit hypoelliptique et qu'ils aient tous le même domaine dans L2. Une faiblesse de cette condition (obtenue à peu près simultanément par Hörmander et Malgrange) est qu'elle n'est pas conservée par les changements de coordonnées, comme le montre l'exemple de l 'équation de la chaleur.

Par la suite, Hörmander a étudié les opérateurs de la forme :

c est une fonction indéfiniment différentiable et X0, X1, ..., Xk des opérateurs d'ordre un sans terme d'ordre zéro : chacun de ces opérateurs est donc défini par un champ de vecteurs (cf. équations aux dérivées partielles - Sources et applications). Désignons par [Xj, Xl] le commutant XkXl − XlXk ; c'est encore un opérateur de la même nature et le champ de vecteurs qui lui correspond est le crochet des deux autres champs de vecteurs au sens de la géométrie différentielle. Nous noterons désormais de la même façon opérateurs du premier ordre et champs de vecteurs. Appelons encore Ξ le plus petit espace vectoriel stable par le crochet auquel X0, X1, ..., Xk appartiennent et r(y) la dimension de l'espace vectoriel formé par les valeurs au point y des champs appartenant à Ξ. Cet entier r(y) prend son maximum m sur un ouvert non vide. Si m est strictement plus petit que la dimension n + 1 de l'espace, l'opérateur P n'est pas hypoelliptique. En effet, d'après le théorème de Frobenius, on peut trouver un système de coordonnées locales dans lequel P ne contient pas de dérivations par rapport à certaines des variables. Hörmander démontre une réciproque partielle : si on a partout r(y) = n + 1, alors P est hypoelliptique.

1  2  3  4  5
pour nos abonnés,
l’article se compose de 9 pages

Écrit par :

Classification

Autres références

«  DÉRIVÉES PARTIELLES ÉQUATIONS AUX  » est également traité dans :

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Analyse numérique

  • Écrit par 
  • Claude BARDOS, 
  • Martin ZERNER
  •  • 6 001 mots
  •  • 7 médias

Plus peut-être que tout autre domaine des mathématiques, les équations aux dérivés partielles étaient prédisposées à bénéficier de l'utilisation des ordinateurs, pour de nombreuses raisons. La plus importante est leur intervention dans de nombreux problèmes techniques. C'est d'ailleurs un problème d'hydrodynamique, dont la solution devait « améliorer » l […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Équations non linéaires

  • Écrit par 
  • Claude BARDOS
  •  • 10 861 mots
  •  • 3 médias

L'étude des équations aux dérivées partielles non linéaires se trouve à l'interface de nombreux problèmes scientifiques. En effet, la plupart des phénomènes de la physique ou des sciences de l'ingénieur sont non linéaires et une modélisation par des équations linéaires risque, dans certains cas, d'effacer des événements que les équations linéaires ne peuvent […] Lire la suite

DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Sources et applications

  • Écrit par 
  • Martin ZERNER
  •  • 6 319 mots
  •  • 1 média

On se propose de décrire très sommairement quelques types classiques d'équations aux dérivées partielles issues principalement de la physique et de préciser leurs interventions dans des domaines variés des mathématiques.Alors que les solutions des équations différentielles ordinaires dépendent d'une ou de plusieurs constantes arbitraires, c […] Lire la suite

ÉQUATIONS AUX DÉRIVÉES PARTIELLES (notions de base)

  • Écrit par 
  • Yves GAUTIER
  •  • 1 580 mots
  •  • 2 médias

Beaucoup de phénomènes peuvent être décrits par une fonction. Par exemple, le déplacement d’un mobile dans l’espace peut être défini par une fonction f(xyz) où les coordonnées x, y et z correspondent à tous les points de l’espace occupés par le mobile traç […] Lire la suite

ANALYSE MATHÉMATIQUE

  • Écrit par 
  • Jean DIEUDONNÉ
  •  • 8 744 mots

Dans le chapitre « Équations différentielles et équations aux dérivées partielles »  : […] Les équations différentielles s'étaient présentées dès le début du calcul infinitésimal, soit à propos de la détermination de courbes vérifiant certaines propriétés différentielles, soit comme traductions mathématiques de problèmes de mécanique, d'astronomie ou de physique. Au cours du xviii e  siècle, les développements des applications des mathématiques à la physique avaient introduit des équati […] Lire la suite

CALCUL INFINITÉSIMAL - Histoire

  • Écrit par 
  • René TATON
  •  • 11 509 mots
  •  • 3 médias

Dans le chapitre « Équations aux dérivées partielles »  : […] En 1747, à l'occasion d'une étude sur le problème des vents, d'Alembert introduisit et étudia des équations d'un type nouveau, les équations aux dérivées partielles, faisant intervenir simultanément les dérivées partielles d'une même fonction par rapport à différentes variables. Le fait que la plupart des phénomènes physiques dépendent de plusieurs variables révélait l'importance de ce nouveau ty […] Lire la suite

CAUCHY AUGUSTIN-LOUIS (1789-1857)

  • Écrit par 
  • Jean DIEUDONNÉ
  •  • 1 403 mots

Dans le chapitre « Une production considérable »  : […] La production de Cauchy a été considérable ; même ses contemporains lui reprochaient à juste titre sa hâte inconsidérée à livrer souvent à l'impression des débauches indignes de son génie, et il y a évidemment un déchet non négligeable dans le demi-millier de notes qu'il a publiées aux Comptes rendus de l'Académie des sciences. Il n'en est pas moins vrai que, même en faisant abstraction de ses tr […] Lire la suite

DARBOUX GASTON (1842-1917)

  • Écrit par 
  • Jacques MEYER
  •  • 320 mots

Mathématicien français, né à Nîmes et mort à Paris. Après des études à l'École normale supérieure, Darboux fut l'assistant de J. Bertrand à la chaire de physique mathématique au Collège de France (1866-1867), puis enseigna au lycée Louis-le-Grand (1867-1872) et à l'École normale (1872-1873). Il fut maître de conférences (1873-1881), puis professeur de géométrie supérieure (1881) à la faculté des s […] Lire la suite

ÉQUATION, mathématique

  • Écrit par 
  • Gilles LACHAUD
  •  • 1 488 mots

Dans le chapitre « Équations différentielles »  : […] Les équations différentielles sont des équations dont les coefficients et les variables sont eux-mêmes des fonctions, et dont les termes contiennent les dérivées de cette fonction ainsi que la fonction elle-même. Les équations différentielles ordinaires impliquent une fonction y d'une seule variable x et ses dérivées y ', y '', etc. ; l' ordre d'une telle équation est l'ordre de la plus haute […] Lire la suite

EULER LEONHARD (1707-1783)

  • Écrit par 
  • Christian HOUZEL, 
  • Jean ITARD
  •  • 2 813 mots

Dans le chapitre « Mathématiques »  : […] Euler est l'auteur de trois grands traités didactiques sur l'analyse infinitésimale, dans lesquels il a exposé sa conception nouvelle du calcul différentiel et intégral et ses rapports avec la géométrie : l' Introductio in analysin infinitorum (1748), les Institutiones calculi differentialis (1755) et les Institutiones calculi integralis (3 vol., 1768-1770). Le premier de ces traités opè […] Lire la suite

Voir aussi

Pour citer l’article

Martin ZERNER, « DÉRIVÉES PARTIELLES (ÉQUATIONS AUX) - Théorie linéaire », Encyclopædia Universalis [en ligne], consulté le 30 novembre 2021. URL : https://www.universalis.fr/encyclopedie/derivees-partielles-equations-aux-theorie-lineaire/