Abonnez-vous à Universalis pour 1 euro

EXPONENTIELLE & LOGARITHME

Pour les constructeurs des premières tables, les logarithmes étaient avant tout un outil de calcul numérique ; mais leur importance n'a cessé de croître. Il suffira de feuilleter cette encyclopédie pour constater que, de nos jours, les logarithmes et les exponentielles interviennent dans tous les domaines de l'activité humaine, qu'il s'agisse de physique, de médecine, de sciences humaines... C'est le cas de tout phénomène naturel dans lequel deux mesures x et y sont telles que le taux de variation Δyx de y est proportionnel à y ; la quantité y dépend alors exponentiellement de x, car on a y′ = ky. Mais les exponentielles s'introduisent aussi dans de nombreux autres cas ; c'est ainsi que les lois de Laplace-Gauss ou de Poisson sont des techniques de base de la statistique.

En tant que fonctions nouvelles, les transcendantes élémentaires (logarithmes, exponentielles et fonctions trigonométriques) se sont introduites d'une façon naturelle au cours du xviie siècle, à partir de considérations cinématiques tout d'abord (étude de la cycloïde par exemple). Avec les débuts du calcul infinitésimal, ces fonctions acquièrent une grande importance théorique : découverte de leurs développements en série et rôle essentiel qu'elles jouent dans l'intégration de nombreuses équations différentielles simples. Au xviiie siècle, le mathématicien suisse L.  Euler, par extension au champ complexe, a mis en évidence les liens étroits qui existent entre ces fonctions et a introduit les notations que l'on utilise encore aujourd'hui.

Dans ce qui suit, on construit complètement ces fonctions à partir du logarithme népérien, primitive de 1/x, en se limitant à l'aspect théorique sans aborder l'aspect pratique des calculs. Cet article est en liaison étroite avec l'article calcul numérique.

Résultats préliminaires

Soit R le groupe additif des nombres réels ; les nombres réels strictement positifs forment un groupe pour la multiplication que nous noterons R*+. On se propose ici de décrire tous les homomorphismes continus de ces groupes entre eux. Ainsi, les fonctions logarithmes, les fonctions exponentielles et les fonctions puissances sont des applications continues f, g, h :

qui vérifient respectivement les relations fonctionnelles :

Montrons pour commencer que les seuls homomorphismes continus du groupe additif R dans lui-même sont les homothéties. Soit donc :

une application continue telle que u(x + y) = u(x) + u(y) ; posons u(1) = a. Pour montrer que u(x) = ax pour tout nombre réel x, il suffit, à cause de la continuité, d'établir ce résultat pour x rationnel. Remarquons d'abord que la relation fonctionnelle entraîne :
pour tout entier positif n ; d'autre part, u(1) = u(1 + 0) = u(1) + u(0), d'où u(0) = 0. Pour les entiers négatifs, on a : 0 = u(0) = u(n + (−n)) = u(n) + u(−n), d'où :
ainsi, u(x) = ax pour tout entier relatif. Soit enfin x = p/q un nombre rationnel ; on a :
d'où :
et finalement :

Pour a = 0, on obtient l'application nulle et, pour a ≠ 0, ces homomorphismes sont des isomorphismes, c'est-à-dire qu'ils sont bijectifs.

Il est facile de voir que la continuité de u équivaut à la continuité à l'origine, ou encore au fait que u soit bornée au voisinage de zéro. On peut même démontrer que la mesurabilité de u suffit ; en revanche, si l'on n'impose aucune condition, on peut montrer, en faisant appel à l'axiome du choix, qu'il existe des homomorphismes u autres que les homothéties.

Revenons aux équations fonctionnelles vérifiées par f et g. En intégrant ces équations, on voit que f et g sont, en fait, de classe C1. On peut donc dériver des équations par rapport à y ; ce qui donne :

et donc, pour y = 1,
de même, on a :
et donc,[...]

La suite de cet article est accessible aux abonnés

  • Des contenus variés, complets et fiables
  • Accessible sur tous les écrans
  • Pas de publicité

Découvrez nos offres

Déjà abonné ? Se connecter

Écrit par

  • : maître de conférences honoraire à l'université de Paris-VII

. In Encyclopædia Universalis []. Disponible sur : (consulté le )

Médias

Logarithme népérien

Logarithme népérien

Fonction y = Log x

Fonction y = Log x

Fonction exponentielle

Fonction exponentielle

Autres références

  • BRIGGS HENRY (1561-1630)

    • Écrit par Bernard PIRE
    • 745 mots

    Henry Briggs est un mathématicien anglais dont le nom est attaché à la découverte des logarithmes décimaux (appelés aussi logarithmes vulgaires ou briggsiens). La publication de son livre Arithmeticalogarithmica (1624) eut une influence considérable sur l’utilisation de ces logarithmes dans...

  • CALCUL INFINITÉSIMAL - Histoire

    • Écrit par René TATON
    • 11 465 mots
    • 3 médias
    Un autre problème qui a joué un grand rôle dans l'évolution des techniques infinitésimales est celui de l'introduction des logarithmes, du passage progressif de la table créée par Neper, en 1614, à la notion de fonction logarithmique et à l'étude des propriétés de celle-ci.
  • CAVALIERI FRANCESCO BONAVENTURA (1598-1647)

    • Écrit par Universalis
    • 358 mots

    Mathématicien dont les recherches en géométrie préfigurent le calcul intégral. Dans sa jeunesse, Cavalieri rejoignit les jésuates (souvent appelés clercs religieux de saint Jérôme), un ordre religieux qui suivait la règle de saint Augustin et qui fut supprimé en 1668 par le pape Clément X. Les...

  • EULER LEONHARD (1707-1783)

    • Écrit par Christian HOUZEL, Jean ITARD
    • 2 759 mots
    • 1 média
    ...tributaire de la géométrie. Euler donne dans l'Introductio( chap. vi à viii) un exposé des fonctions transcendantes élémentaires : la fonction exponentielle, le logarithme et les fonctions trigonométriques, qui sont envisagées ainsi pour la première fois. L'exponentielle az (où a ...
  • Afficher les 11 références

Voir aussi