RAMAN EFFET

Carte mentale

Élargissez votre recherche dans Universalis

Symétrie des vibrations et théorie des groupes

Si les variations du moment électrique et de la polarisabilité paraissent intuitivement accessibles pour des molécules di- ou triatomiques, il n'en est pas de même pour des édifices polyatomiques à grand nombre d'atomes, les plus intéressants de nos jours en chimie ou en biologie.

Une méthode très élégante permet de tourner cette difficulté, en se fondant uniquement sur les propriétés de symétrie des molécules, et en faisant appel à des résultats connus de la théorie des groupes. La prévision des caractères essentiels des spectres vibrationnels d'un édifice moléculaire donné se résume en quelques étapes.

On imagine, à partir de la formule chimique et des propriétés connues, les différentes configurations moléculaires possibles. Pour chacune d'entre elles, on recherche les éléments (axes, plans, centre) et les opérations de symétrie possibles (rotations propres et impropres, réflexions, inversion). L'ensemble de ces opérations, laissant toutes un point invariant commun dans la molécule, constitue un « groupe ponctuel ».

Chacune des hypothèses structurales formulées pour une molécule se classe ainsi dans un groupe ponctuel bien défini. On constate que, malgré le très grand nombre de configurations moléculaires imaginables, elles se classent toutes dans un vingtaine de groupes.

Table de caractères

Toutes les propriétés utiles à la prévision des spectres vibrationnels sont contenues dans la « table de caractères » du groupe, tableau carré où chaque colonne contient une classe d'opérations de symétrie et chaque ligne une représentation irréductible ou espèce.

Les 3 N mouvements de la molécule, translations, rotations et modes normaux de vibration, se rangent dans cette table en fonction de leurs propriétés de symétrie, ainsi que les 3 composantes du vecteur moment dipolaire et les 6 du tenseur de polarisabilité.

L'analyse vibrationnelle, c'est-à-dire le dénombrement et l'activité des modes de vibration en Raman ou infrarouge, s'effectue à partir de ces tables par un calcul très simple où intervient le nombre d'atomes inchangés au cours d'une opération de symétrie.

Interprétation des spectres

Quelques règles tirées de ces résultats méritent d'être brièvement rappelées : certains modes de vibration peuvent être inactifs à la fois en diffusion Raman et en absorption infrarouge (appelée par la suite infrarouge) ; d'autre part, si la molécule possède un centre de symétrie, il n'existe aucune vibration commune aux spectres Raman et infrarouge ; celles qui sont symétriques par rapport à ce centre (g, de l'allemand gerade) sont actives en Raman et inactives en infrarouge ; les vibrations antisymétriques par rapport à ce centre (u, de l'allemand ungerade) sont au contraire actives dans le domaine de l'infrarouge et inactives en Raman.

La présence simultanée de certains modes, à la fois dans les spectres Raman et infrarouge, indique de façon certaine l'absence de centre de symétrie.

La présence d'au moins un axe de symétrie d'ordre supérieur à deux se traduit par l'apparition de modes dégénérés, donc confondus à une même fréquence. Le nombre apparent de bandes ou de raies peut ainsi devenir inférieur aux 3 N − 6 prévus. C'est le cas, par exemple, des édifices tétraédriques, comme CCl4, qui ne présentent que 4 raies au lieu de 9.

Spectre Raman : tétrachlorure de carbone

Diaporama : Spectre Raman : tétrachlorure de carbone

Spectre Raman du tétrachlorure de carbone excité par un laser hélium-néon de longueur d'onde ? = 632,8 nm. 

Crédits : Encyclopædia Universalis France

Afficher

Les vibrations totalement symétriques sont toutes actives en Raman et se traduisent par des raies intenses et polarisées (par exemple, pulsation symétrique du benzène et des cycles aromatiques). Les vibrations non totalement symétriques ou dégénérées donnent des raies dépolarisées.

En plus des modes fondamentaux prévus dans l'hypothèse harmonique, des bandes correspondant à des « harmoniques » ou à des « combinaisons » de modes apparaissent aussi dans les spectres expérimentaux. Ces bandes s'interprètent par des transitions entre niveaux non consécutifs dans le diagramme énergétique. Leur intensité est souvent beaucoup plus faible dans le spectre Raman que dans l'infrarouge.

La complémentarité des spectres Raman et infrarouge et la nécessité de les mettre en œuvre conjointement apparaissent de manière encore plus évidente si l'on examine les techniques expérimentales de mesure.

Aspects expérimentaux

L'effet Raman s'observe en principe dans un domaine spectral où l'absorption des rayonnements diffusés est faible. La fenêtre spectrale la plus utilisée se situe ainsi dans le visible, entre les absorptions électroniques (ultraviolet) et vibrationnelles (infrarouge). C'est dans ce d [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 10 pages

Médias de l’article

Raman, Alder et Hahn

Raman, Alder et Hahn
Crédits : Hulton Getty

photographie

Spectre Raman : tétrachlorure de carbone

Spectre Raman : tétrachlorure de carbone
Crédits : Encyclopædia Universalis France

diaporama

Spectre Raman : cellule sanguine isolée

Spectre Raman : cellule sanguine isolée
Crédits : Encyclopædia Universalis France

graphique

Afficher les 3 médias de l'article


Écrit par :

  • : directeur d'institut au C.N.R.S., laboratoire de spectrochimie infrarouge et Raman (L.A.S.I.R.), professeur à l'université des sciences et techniques de Lille

Classification

Autres références

«  RAMAN EFFET  » est également traité dans :

OPTIQUE - Optique non linéaire

  • Écrit par 
  • Daniel RICARD
  •  • 4 941 mots
  •  • 5 médias

Dans le chapitre « Diffusions stimulées »  : […] Si, ω 1 et ω 2 étant positifs et ω 1  >  ω 2 , on a ω 1  − ω 2  ≃ ω ba , alors χ (3)  (ω 1 , − ω 1 , ω 2 ) est également complexe et sa partie imaginaire est telle, toujours dans le cas normal, qu'il y a amplification à la fréquence ω 2 et absorption à la fréquence ω 1 . Il s'agit encore d'une transition à deux photons ; mais, ici, un photon d'énergie ℏω 1 est détruit pendant qu'un photon d'én […] Lire la suite

RAMAN CHANDRASEKHARA VENKATA (1888-1970)

  • Écrit par 
  • Bernard PIRE
  •  • 265 mots
  •  • 1 média

Né le 7 novembre 1888 à Tiruchirapalli dans l'État de Madras (aujourd'hui le Tamil Nādu, en Inde), Chandrasekhara Venkata Raman fut le premier Prix Nobel scientifique asiatique. L'absence de poste universitaire en Inde fait qu'il passe dix ans comme fonctionnaire du ministère des Finances tout en publiant de nombreux travaux scientifiques, avant de finalement devenir professeur de physique à l'un […] Lire la suite

TISSUS ANIMAUX

  • Écrit par 
  • Roger MARTOJA, 
  • Jean RACADOT
  •  • 7 226 mots

Dans le chapitre « Méthodes histochimiques modernes, méthodes physiques »  : […] Dans le domaine de la localisation et de la caractérisation des protéines, l'immunohistochimie apporte une solution très satisfaisante : mise en évidence de la protéine par une réaction d'une très haute spécificité avec l' anticorps préalablement marqué par un atome fluorescent ou radioactif, lequel rend visible le complexe protéine-anticorps ainsi formé. La spectrophotométrie d'absorption, tout a […] Lire la suite

Voir aussi

Pour citer l’article

Michel DELHAYE, « RAMAN EFFET », Encyclopædia Universalis [en ligne], consulté le 09 août 2022. URL : https://www.universalis.fr/encyclopedie/effet-raman/