SILICIUM

Carte mentale

Élargissez votre recherche dans Universalis

Le silicium (symbole Si, numéro atomique 14) ne se trouve pas à l'état natif, mais constitue, sous forme de silice et de silicates, l'élément le plus abondant (environ 28 p. 100), après l'oxygène, à la surface du globe (cf. silicates, silice). Son nom vient du latin silex : caillou. Antoine-Laurent Lavoisier avait soupçonné son existence en 1787, mais ce n'est qu'en 1823 que Jöns Jacob Berzelius l'isola dans un état de pureté suffisant pour pouvoir en aborder l'étude.

Le silicium cristallisé a un aspect métallique ; en raison de sa dureté, il polit le verre, mais il est poli par l'émeri. Sa densité est de 2,33 à 25 0C ; il fond à 1 410 0C et bout à 2 680 0C. On l'utilise de plus en plus pour l'obtention de semiconducteurs. En métallurgie, c'est un désoxydant des aciers et un élément d'alliages (fontes, aciers et alliages légers).

En raison des analogies des éléments silicium et carbone (C), on a très tôt (dès le xixe siècle et surtout au début du xxe siècle) songé à bâtir une chimie organique du silicium (chimie organosilicique). En fait, le silicium, plus volumineux et plus électropositif que le carbone, a donné naissance à une chimie organique spécifique, où son affinité pour l'oxygène tient une place prépondérante.

Le corps simple silicium

Compte tenu de la réactivité du silicium avec l'oxygène et de la grande stabilité des oxydes formés, on ne le trouve pas à l'état de corps simple dans la nature. Il est obtenu à partir de la silice, par réduction au four à arc utilisant des électrodes de graphite, généralement selon un procédé en continu et à des températures variant entre 1 600 et 1 800 0C. Il est récupéré par coulée. Une variante de ce procédé travaillant à plus basse température fait appel à l'aluminothermie. On peut estimer entre 500 000 et 1 million de tonnes la production mondiale annuelle de silicium. Selon ses applications, on distingue divers degrés de pureté et de mise en forme :

– une pureté « électronique », nécessitant des processus successifs de purification fondés sur le procédé de la fusion de zone (différence de solubilité des impuretés entre le silicium liquide et le silicium solide), ou la distillation fractionnée, après volatilisation du silicium sous forme de dérivés hydrohalogénés liquides tels que SiHCl3 ; cette pureté est de l'ordre du ppb (partie par milliard) atomique ; elle s'exprime également par nombre d'atomes d'impuretés par centimètre cube de silicium : 1 ppb ≈ 0,5 × 1013 atomes /cm3 ;

– une pureté « solaire » qui, pour les éléments courants, est de l'ordre du ppm (partie par million) ;

– une pureté métallurgique, qui est généralement de l'ordre du pour-cent.

Ces trois types d'applications induisent des mises en forme très diverses de matériaux. 1) Élaboration de monocristaux de très grande dimension, de très grande pureté (ppb) et d'une quasi-perfection cristalline pour les besoins automatisés et de grande fiabilité de l'industrie électronique (diodes, transistors, circuits intégrés, microprocesseurs, etc.) dont le degré d'intégration (nombre de composants par unité de surface) a crû très rapidement au cours des vingt dernières années (de l'ordre de 106 par « puce » élémentaire, c'est-à-dire quelques millimètres carrés), tandis que le coût de ces composants décroît par ailleurs très rapidement. Ces monocristaux sont obtenus par tirage à partir d'un bain fondu par la méthode dite de Czochralski, qui utilise des creusets de silice également de grande pureté. Leur dimension peut aujourd'hui atteindre un diamètre d'environ 20 centimètres, pour un poids total de l'ordre de la centaine de kilogrammes. Leur perfection cristalline (absence de fautes d'empilement et de dislocations) en fait sans doute actuellement les cristaux qui s'approchent le plus de l'idéalité. Quelques cristaux sont également obtenus sans creuset, par la méthode de la zone flottante, évitant la pollution de l'oxygène du creuset. 2) Élaboration de couches minces monocristallines par des techniques de dépôt en phase gazeuse ou de couches amorphes, dans des plasmas hydrogénés, pour la réalisation de diodes photovoltaïques. 3) Élaboration de lingots polycristallins destinés à l'industrie photovoltaïque ou après broyage à l'industrie métallurgique.

Propriétés

De masse atomique 28,085, le silicium naturel correspond à un mélange de trois isotopes stables : 28Si (92,27 p. 100), 29Si (4,68 p. 100) et 30Si (3,05 p. 100). Sur le plan structural, sa maille élémentaire est cubique (a = 543,072 pm, 1 pm = 10−12 m) et de type diamant (symétrie Fd3m). Chaque atome de silicium est distant de 235 picomètres de ses quatre plus proches voisins. La liaison Si−Si est relativement forte et peut être évaluée à 220 kJ ( mol−1. Cette structure est commune à la plupart des éléments de la quatrième colonne du tableau périodique (C, Si, Ge, Sn [gris]) pour laquelle on observe le passage progressif d'un état isolant (diamant) à un état métallique (Sn [blanc], Pb) lorsque les éléments deviennent de plus en plus lourds.

Le silicium non dopé est un semiconducteur dit intrinsèque, caractérisé par une bande d'énergie interdite d'environ 1,1 eV – soit sensiblement 100 kJ – séparant l'énergie maximale des électrons de liaison de celle, minimale, des niveaux électroniques vides de la bande de conduction. Cette énergie, proche de la limite inférieure des ondes électromagnétiques du spectre solaire visible, confère au silicium ses potentialités photovoltaïques : formation de paires électron-trou par absorption de ces photons. Il s'agit cependant d'un semiconducteur dit indirect qui, associant un tel transfert à l'absorption d'un phonon, ne permet pas au matériau de conduire à des effets optoélectroniques tels que ceux qui sont obtenus avec les semiconducteurs dits III-V – GaAs, InP –, pour la fabrication de diodes lasers. Par dopage par des atomes appropriés et se substituant aux atomes de silicium, on introduit des niveaux donneurs (éléments de la colonne V comme le phosphore, c'est-à-dire possédant un électron de plus) ou accepteurs (éléments de la colonne III, par exemple le bore, c'est-à-dire possédant un électron de moins). On obtient alors des semiconducteurs extrinsèques respectivement dits n et p, et dont la conductivité électrique croît linéairement avec le taux de dopage. Par ailleurs, la mobilité électronique des électrons et des trous (vitesse de déplacement), autre para [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 9 pages

Écrit par :

  • : directeur de recherche au C.N.R.S., directeur du laboratoire de chimie organique et organométallique de l'université Bordeaux-I
  • : docteur ès sciences, professeur de chimie à l'université de Bordeaux-I, membre de l'Institut

Classification

Autres références

«  SILICIUM  » est également traité dans :

ACIER - Technologie

  • Écrit par 
  • Louis COLOMBIER, 
  • Gérard FESSIER, 
  • Guy HENRY, 
  • Joëlle PONTET
  •  • 14 172 mots
  •  • 10 médias

Dans le chapitre « Aciers alliés »  : […] Les aciers alliés se distinguent des aciers non alliés par la présence de certains éléments d'alliage (cf. tableau). Les éléments d'alliage agissent sur la structure de l'acier et modifient par là certaines de leurs propriétés, mais ils peuvent aussi attribuer à l'acier des propriétés entièrement nouvelles. Chacun de ces éléments se caractérise par une tendance dominante soit à rester dissous da […] Lire la suite

CIRCUITS INTÉGRÉS

  • Écrit par 
  • Frédéric PÉTROT, 
  • Franck WAJSBÜRT
  •  • 8 976 mots
  •  • 20 médias

Dans le chapitre « Le substrat »  : […] Le substrat des circuits intégrés CMOS – c'est-à-dire la base sur laquelle ils sont construits – est en silicium. Cet élément est abondant à la surface de la Terre sous forme de sable (silice et silicates). Pour pouvoir être utilisable dans ce secteur de l'industrie, il doit être parfaitement purifié et mis sous forme de galette monocristalline. Cette dernière représente en fait un cristal de sil […] Lire la suite

CRISTAUX - Synthèse des cristaux

  • Écrit par 
  • Yves GAUTIER
  •  • 6 271 mots
  •  • 2 médias

Dans le chapitre « Les semiconducteurs »  : […] Les semiconducteurs sont des corps non métalliques qui conduisent imparfaitement l'électricité et dont la résistivité décroît lorsque la température augmente. Ils trouvent de nombreuses applications en électronique et en informatique en entrant dans la fabrication de diodes, de transistors, de photoconductances et de photodiodes. Le germanium et, surtout, le silicium sont les principaux semicondu […] Lire la suite

ÉLECTRONIQUE INDUSTRIE

  • Écrit par 
  • Michel-Henri CARPENTIER
  •  • 14 324 mots
  •  • 8 médias

Dans le chapitre «  Les composants »  : […] Les composants étaient initialement des constituants élémentaires que l'on assemblait pour réaliser des fonctions. On a déjà dit que l'évolution de la technique et particulièrement des circuits intégrés avait étendu cette définition à des éléments d'assez petite dimension assurant des fonctions plus ou moins complètes, voire très complexes (microprocesseurs). On a coutume de classer les composant […] Lire la suite

GÉOCHIMIE

  • Écrit par 
  • Marie-Laure PONS
  •  • 2 062 mots
  •  • 4 médias

Dans le chapitre « Les croûtes »  : […] L'écorce terrestre est majoritairement constituée de roches silicatées (c'est-à-dire comportant du silicium et de l'oxygène) qui définissent deux types de croûte. La croûte océanique est principalement composée de basaltes et de gabbros, riches en fer et en magnésium. Cet assemblage chimique est dit « basique », avec des teneurs en silice (SiO 2 ) inférieures à 52 p. 100. La croûte continentale […] Lire la suite

GERMANIUM

  • Écrit par 
  • Universalis
  •  • 335 mots

De Germania , Allemagne Symbole chimique : Ge Numéro atomique : 32 Masse atomique : 72,59 Point de fusion : 937,4  0 C Point d'ébullition : 2 830  0 C Densité (à 20  0 C) : 5,32. Semi-métal argenté qui a été découvert par Clemens Winkler dans l'argyrodite (Ag 4 GeS 4 , 2 Ag 2 S) et dont les propriétés chimiques avaient été prédites par D. I. Mendeleïev, en 1871, à partir de sa classification pério […] Lire la suite

MAGNÉSIUM

  • Écrit par 
  • Maurice HARDOUIN, 
  • Michel SCHEIDECKER
  •  • 4 266 mots
  •  • 9 médias

Dans le chapitre « Réduction thermique »  : […] Malgré sa chaleur de formation élevée, la magnésie peut être réduite par des agents énergétiques. Cette réaction est fortement endothermique et ne peut se produire qu'au-dessus d'une certaine température qui dépend du réducteur employé. Pour favoriser le déplacement de l'équilibre dans le sens de la réduction, il faut apporter de l'énergie sous forme de chaleur et éliminer le magnésium au fur et […] Lire la suite

MATIÈRE (physique) - État solide

  • Écrit par 
  • Daniel CALÉCKI
  •  • 8 607 mots
  •  • 13 médias

Dans le chapitre « Les solides covalents »  : […] À titre d'exemple, prenons deux atomes d'hydrogène initialement très éloignés l'un de l'autre ; ils possèdent chacun un électron occupant le niveau de plus basse énergie. On sait que ce niveau peut être saturé par deux électrons dans des états de spin opposé. Quand on rapproche ces deux atomes pour constituer une molécule d'hydrogène H 2 , chacun des deux électrons va être soumis à l'attraction de […] Lire la suite

MICROÉLECTRONIQUE

  • Écrit par 
  • Claude WEISBUCH
  •  • 13 684 mots
  •  • 23 médias

Dans le chapitre « La fabrication des circuits intégrés »  : […] Ces quatre facteurs, qui ont permis l'essor de la microélectronique, se sont développés grâce à l'utilisation de méthodes de production hautement parallélisées (s'apparentant beaucoup à l'imprimerie) et dont la reproductibilité fait l'objet d'efforts incessants. L'idée est de fabriquer en une seule opération technologique tous les éléments de même nature sur la puce, en fait sur toute une plaquet […] Lire la suite

MICROSYSTÈMES, technologie

  • Écrit par 
  • Daniel HAUDEN
  •  • 3 754 mots
  •  • 11 médias

Dans le chapitre « Augmentation du couple mécanique et de la puissance dans les micromécanismes »  : […] L'augmentation du couple et de la puissance mécanique est obtenue soit par l'accroissement de la force électrostatique, soit par l'usage de matériaux d'actionnement provoquant une force mécanique importante ou une déformation de grande amplitude. Le couple et la puissance mécanique, donc la force électrostatique, sont proportionnels à la surface active des électrodes. Cette surface peut être accru […] Lire la suite

Voir aussi

Pour citer l’article

Jacques DUNOGUÈS, Michel POUCHARD, « SILICIUM », Encyclopædia Universalis [en ligne], consulté le 01 décembre 2021. URL : https://www.universalis.fr/encyclopedie/silicium/