THERMODYNAMIQUEThermodynamique chimique

Carte mentale

Élargissez votre recherche dans Universalis

On peut dire qu'au milieu du xixe siècle les bases fondamentales de la thermodynamique classique et de la théorie de l'énergie étaient établies grâce aux travaux de V. Hess, S. Carnot, J. R. von Mayer, J. P. Joule, R. J. E. Clausius, lord Kelvin. Les lois ainsi mises au jour contribuèrent puissamment au développement des machines thermiques, mais leur rigueur et leur généralité incitèrent à les appliquer à toutes les modifications des corps qui nous entourent.

Les applications à la chimie prirent naissance avec les travaux de Clausius et d'Émile Clapeyron, mais c'est seulement dans le dernier quart du xixe siècle qu'elles se développèrent. La personnalité de J. W. Gibbs s'y détache et, grâce à son introduction systématique du potentiel chimique, l'évolution se poursuit de façon claire et logique.

Josiah Willars Gibbs

Photographie : Josiah Willars Gibbs

Photographie

Le physicien et mathématicien américain Josiah Willard Gibbs (1839-1903), professeur de physique mathématique au Yale College, est considéré comme le fondateur de la mécanique statistique. 

Crédits : Hulton Getty

Afficher

Ces recherches, essentiellement théoriques, furent utilisées ultérieurement par des chercheurs de renom : H. W. B. Roozeboom (règle des phases), Van Laar, P. Duhem (applications du potentiel chimique). Enfin, G. N. Lewis simplifia le développement des calculs, en introduisant (1901) les notions de fugacité et d'activité, qui permettent, pour les gaz non parfaits et les solutions quelconques, d'exprimer le potentiel chimique des constituants de façon aussi simple que pour un gaz parfait.

Cependant, ces travaux se préoccupent peu de la réaction chimique elle-même ; les grandeurs envisagées se rapportent soit au système total, soit à l'un des constituants, mais non à la réaction (chaleur de réaction, travail maximal). Pourtant, l'intérêt de la thermodynamique pour le chimiste avait été pressenti dès 1866 par H. Sainte-Claire Deville, et aussi par Horstmann (1869), mais ce sont surtout H. L. Helmholtz, J. H. Van't Hoff et W. Nerst qui s'y attachèrent, et, au début du siècle, les chimistes généralisent son emploi. On retrouve à cette époque (1905), dans un remarquable travail de F. Haber, les données nécessaires au calcul des enthalpies libres de réactions.

Malgré les progrès indéniables qu'elle a introduits dans l'étude de la réaction chimique, la précédente conception n'envisage [...]


1  2  3  4  5
pour nos abonnés,
l’article se compose de 12 pages

Médias de l’article

Josiah Willars Gibbs

Josiah Willars Gibbs
Crédits : Hulton Getty

photographie

Faux équilibre

Faux équilibre
Crédits : Encyclopædia Universalis France

graphique

Équilibres fer-oxydes de fer-oxydes de carbone

Équilibres fer-oxydes de fer-oxydes de carbone
Crédits : Encyclopædia Universalis France

graphique

Afficher les 3 médias de l'article


Écrit par :

  • : professeur à l'université de Paris-VI-Pierre-et-Marie Curie et à l'École nationale supérieure de chimie, Paris

Classification

Autres références

«  THERMODYNAMIQUE  » est également traité dans :

THERMODYNAMIQUE - Vue d'ensemble

  • Écrit par 
  • Paul GLANSDORFF
  •  • 1 350 mots
  •  • 4 médias

La thermodynamique est une science relativement jeune. Elle a pris naissance au xixe siècle sous la forme d'une discipline embrassant l'étude de toutes les transformations qui s'accomplissent à notre échelle (phénomènes macroscopiques), c'est-à-dire aussi bien les changements d'états physicochimiques que les changements de posi […] Lire la suite

THERMODYNAMIQUE - Histoire

  • Écrit par 
  • Arthur BIREMBAUT
  •  • 8 830 mots
  •  • 3 médias

Parmi les multiples formes de l'énergie, la chaleur est celle à laquelle les savants ont mis le plus de temps à donner un statut scientifique. Or toute discipline qui a pour objet l'étude d'une catégorie déterminée de phénomènes ne devient effectivement une science qu'à partir du moment où la mesure y est introduite. La […] Lire la suite

THERMODYNAMIQUE - Lois fondamentales

  • Écrit par 
  • Paul GLANSDORFF, 
  • Ilya PRIGOGINE
  •  • 3 735 mots
  •  • 5 médias

Le principe d'équivalence des unités de chaleur et de travail est généralement attribué au médecin allemand J. R. von Mayer, qui l'a formulé pour la première fois en 1842 dans ses Remarques sur les forces inanimées de la nature. Mais on doit aussi associer à la même découverte le nom de J. P. Joule avec, comme précurseurs, B. Thompson (co […] Lire la suite

THERMODYNAMIQUE - Thermodynamique technique

  • Écrit par 
  • Paul GLANSDORFF
  •  • 2 517 mots
  •  • 3 médias

La thermodynamique technique applique les premier et second principes aux machines thermiques. La liquéfaction des gaz, l'industrie frigorifique, le fonctionnement des pompes à chaleur, la climatisation, les moteurs à combustion, etc., sont autant de domaines concernés par ces lois, et les diagrammes et cycles qu'on […] Lire la suite

THERMODYNAMIQUE - Processus irréversibles linéaires

  • Écrit par 
  • Jacques CHANU
  •  • 2 491 mots
  •  • 5 médias

Jusqu'à ce que la thermodynamique ait été en mesure d'en fournir une présentation unifiée, les phénomènes de transport qui intéressent les milieux matériels furent étudiés de manière séparée et en ordre plutôt dispersé, sans qu'au-delà d'analogies formelles plus ou moins évidentes aucun lien d'essence fondamentale n'ait été vraiment dégagé. L'apport de la thermodynamique contemporaine fut décisif […] Lire la suite

THERMODYNAMIQUE - Processus irréversibles non linéaires

  • Écrit par 
  • Agnès BABLOYANTZ, 
  • Paul GLANSDORFF, 
  • Albert GOLDBETER, 
  • Grégoire NICOLIS, 
  • Ilya PRIGOGINE
  •  • 9 748 mots
  •  • 8 médias

Les progrès réalisés dans le domaine non linéaire sont beaucoup plus récents. On connaît cependant à leur sujet un critère d'évolution général régissant le comportement d'un système dissipatif, soumis à des contraintes stationnaires (Paul Glansdorff et Ilya Prigogine, 1954).Après décomposition de la production d'ent […] Lire la suite

THERMODYNAMIQUE (notions de base)

  • Écrit par 
  • Bernard DIU
  •  • 6 108 mots

De nos jours, on peut définir la thermodynamique comme la science des propriétés et des processus qui mettent en jeu la température et la chaleur.Le nom de « thermodynamique » associe les deux mots grecs thermon (chaleur) et dynamis (puissance). Le but premier de la discipline, explicitement formulé d'emblée, était d'a […] Lire la suite

BIOÉNERGÉTIQUE

  • Écrit par 
  • Pierre KAMOUN, 
  • Paul MAZLIAK, 
  • Alexis MOYSE, 
  • Jacques TONNELAT
  • , Universalis
  •  • 5 211 mots
  •  • 3 médias

Dans le chapitre « Thermodynamique et bioénergétique »  : […] Historiquement, les phénomènes énergétiques ont d'abord été étudiés à propos des machines à vapeur. Une science s'est ainsi édifiée, qui s'applique à tous les domaines de la physique, de la chimie et de la biologie. Son importance est fondamentale et son application universelle, bien qu'elle ait conservé le nom de thermodynamique. La thermodynamique repose sur deux principes qui ne sont pas direc […] Lire la suite

BOLTZMANN LUDWIG (1844-1906)

  • Écrit par 
  • Pierre COSTABEL
  •  • 1 634 mots
  •  • 1 média

Dans le chapitre « L'interprétation probabiliste du deuxième principe de la thermodynamique »  : […] À partir de ce deuxième principe, Loschmidt a présenté à Boltzmann une objection redoutable, souvent reprise depuis lors, et qui consiste à affirmer l'impossibilité de faire sortir des équations réversibles de la mécanique une interprétation des processus irréversibles de la thermodynamique. Boltzmann a parfaitement compris la valeur de l'objection et y a trouvé un levier puissant pour renouveler […] Lire la suite

CARNOT SADI (1796-1832)

  • Écrit par 
  • Robert FOX
  •  • 838 mots

Fils aîné de Lazare Carnot, « l'Organisateur de la Victoire », Nicolas Léonard Sadi Carnot est un des pionniers de la thermodynamique. Son unique publication, les Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance , ignorée de son temps, mais redécouverte trente ans plus tard par Clapeyron, permit à Thomson et à Clausius d'énoncer le second principe […] Lire la suite

Voir aussi

Pour citer l’article

Pierre SOUCHAY, « THERMODYNAMIQUE - Thermodynamique chimique », Encyclopædia Universalis [en ligne], consulté le 23 novembre 2020. URL : https://www.universalis.fr/encyclopedie/thermodynamique-thermodynamique-chimique/