THERMODYNAMIQUEThermodynamique chimique

Carte mentale

Élargissez votre recherche dans Universalis

Les équilibres chimiques

La connaissance de la variation d'enthalpie libre ΔG est fondamentale, car, à T et à P données, si, dans les conditions de l'expérience, cette variation est négative, les composants du système réagiront (cf. thermodynamique - Lois fondamentales). En revanche, si en fonction des conditions opératoires, la valeur de G est minimale, elle ne pourra diminuer : le système n'évoluera pas, et il sera donc en équilibre ; la condition d'équilibre s'écrira, par suite, en exprimant ΔGT,P pour une transformation possible et en écrivant ΔGT,P = 0.

Conditions d'équilibre

La condition précédente appliquée à la variation ΔGT,P de réaction donne, en posant ΔG0 = − RT ln KP,

d'où la loi d'action de masse de Guldberg et Waage (1867) :

Dans le cas des gaz parfaits, la « constante » d'action de masse KP ne dépend que de la température, comme ΔG0, et lui est liée directement, ce qui lui donne sa signification physique.

En solution, une relation du même ordre est applicable aux activités ou aux concentrations ai ou ci, KP étant remplacée par Ka, constante d'action de masse appliquée aux activités.

Il est souvent plus souhaitable d'obtenir une relation entre les proportions des constituants. La loi des gaz parfaits s'applique aussi bien à chaque constituant i qu'à l'ensemble :

n étant le nombre total de moles ; d'où :
en appelant Ni la fraction molaire (ou proportion) de i, avec ΣNi = 1.

En transposant dans la relation précédente, on obtient, en posant Δν = (l + m) − (a + b),

soit une relation entre les proportions des constituants, en fonction de T (par KP) et de P (par PΔν).

Cas des systèmes hétérogènes

Il arrive fréquemment que, dans un système hétérogène, un constituant ou plusieurs forment une phase solide pure ; un tel constituant est alors dans son état standard, et l'on a μi = μi0 ; il s'ensuit qu'il n'intervient pas dans l'expression du premier membre donnant les pi ou les Ni, ainsi que dans l'évaluation de Δν.

Soit les trois exemples suivants de systèmes hétérogènes.

équilibre de dissociation du carbonate de calcium (solide) en chaux vive (solide) et en dioxyde de carb [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 12 pages

Médias de l’article

Josiah Willars Gibbs

Josiah Willars Gibbs
Crédits : Hulton Getty

photographie

Faux équilibre

Faux équilibre
Crédits : Encyclopædia Universalis France

graphique

Équilibres fer-oxydes de fer-oxydes de carbone

Équilibres fer-oxydes de fer-oxydes de carbone
Crédits : Encyclopædia Universalis France

graphique

Afficher les 3 médias de l'article


Écrit par :

  • : professeur à l'université de Paris-VI-Pierre-et-Marie Curie et à l'École nationale supérieure de chimie, Paris

Classification

Autres références

«  THERMODYNAMIQUE  » est également traité dans :

THERMODYNAMIQUE - Vue d'ensemble

  • Écrit par 
  • Paul GLANSDORFF
  •  • 1 350 mots
  •  • 4 médias

La thermodynamique est une science relativement jeune. Elle a pris naissance au xixe siècle sous la forme d'une discipline embrassant l'étude de toutes les transformations qui s'accomplissent à notre échelle (phénomènes macroscopiques), c'est-à-dire aussi bien les changements d'états physicochimiques que les changements de posi […] Lire la suite

THERMODYNAMIQUE - Histoire

  • Écrit par 
  • Arthur BIREMBAUT
  •  • 8 830 mots
  •  • 3 médias

Parmi les multiples formes de l'énergie, la chaleur est celle à laquelle les savants ont mis le plus de temps à donner un statut scientifique. Or toute discipline qui a pour objet l'étude d'une catégorie déterminée de phénomènes ne devient effectivement une science qu'à partir du moment où la mesure y est introduite. La […] Lire la suite

THERMODYNAMIQUE - Lois fondamentales

  • Écrit par 
  • Paul GLANSDORFF, 
  • Ilya PRIGOGINE
  •  • 3 735 mots
  •  • 5 médias

Le principe d'équivalence des unités de chaleur et de travail est généralement attribué au médecin allemand J. R. von Mayer, qui l'a formulé pour la première fois en 1842 dans ses Remarques sur les forces inanimées de la nature. Mais on doit aussi associer à la même découverte le nom de J. P. Joule avec, comme précurseurs, B. Thompson (co […] Lire la suite

THERMODYNAMIQUE - Thermodynamique technique

  • Écrit par 
  • Paul GLANSDORFF
  •  • 2 517 mots
  •  • 3 médias

La thermodynamique technique applique les premier et second principes aux machines thermiques. La liquéfaction des gaz, l'industrie frigorifique, le fonctionnement des pompes à chaleur, la climatisation, les moteurs à combustion, etc., sont autant de domaines concernés par ces lois, et les diagrammes et cycles qu'on […] Lire la suite

THERMODYNAMIQUE - Processus irréversibles linéaires

  • Écrit par 
  • Jacques CHANU
  •  • 2 491 mots
  •  • 5 médias

Jusqu'à ce que la thermodynamique ait été en mesure d'en fournir une présentation unifiée, les phénomènes de transport qui intéressent les milieux matériels furent étudiés de manière séparée et en ordre plutôt dispersé, sans qu'au-delà d'analogies formelles plus ou moins évidentes aucun lien d'essence fondamentale n'ait été vraiment dégagé. L'apport de la thermodynamique contemporaine fut décisif […] Lire la suite

THERMODYNAMIQUE - Processus irréversibles non linéaires

  • Écrit par 
  • Agnès BABLOYANTZ, 
  • Paul GLANSDORFF, 
  • Albert GOLDBETER, 
  • Grégoire NICOLIS, 
  • Ilya PRIGOGINE
  •  • 9 748 mots
  •  • 8 médias

Les progrès réalisés dans le domaine non linéaire sont beaucoup plus récents. On connaît cependant à leur sujet un critère d'évolution général régissant le comportement d'un système dissipatif, soumis à des contraintes stationnaires (Paul Glansdorff et Ilya Prigogine, 1954).Après décomposition de la production d'ent […] Lire la suite

THERMODYNAMIQUE (notions de base)

  • Écrit par 
  • Bernard DIU
  •  • 6 108 mots

De nos jours, on peut définir la thermodynamique comme la science des propriétés et des processus qui mettent en jeu la température et la chaleur.Le nom de « thermodynamique » associe les deux mots grecs thermon (chaleur) et dynamis (puissance). Le but premier de la discipline, explicitement formulé d'emblée, était d'a […] Lire la suite

BOLTZMANN LUDWIG (1844-1906)

  • Écrit par 
  • Pierre COSTABEL
  •  • 1 634 mots
  •  • 1 média

Dans le chapitre « L'interprétation probabiliste du deuxième principe de la thermodynamique »  : […] À partir de ce deuxième principe, Loschmidt a présenté à Boltzmann une objection redoutable, souvent reprise depuis lors, et qui consiste à affirmer l'impossibilité de faire sortir des équations réversibles de la mécanique une interprétation des processus irréversibles de la thermodynamique. Boltzmann a parfaitement compris la valeur de l'objection et y a trouvé un levier puissant pour renouveler […] Lire la suite

CARNOT SADI (1796-1832)

  • Écrit par 
  • Robert FOX
  •  • 838 mots

Fils aîné de Lazare Carnot, « l'Organisateur de la Victoire », Nicolas Léonard Sadi Carnot est un des pionniers de la thermodynamique. Son unique publication, les Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance , ignorée de son temps, mais redécouverte trente ans plus tard par Clapeyron, permit à Thomson et à Clausius d'énoncer le second principe […] Lire la suite

CHALEUR

  • Écrit par 
  • Paul GLANSDORFF
  •  • 996 mots

La notion de chaleur telle qu'elle résulte de la sensation de chaud et de froid remonte aux époques les plus reculées. Toutefois, elle n'appartint à la science qu'à partir du xviii e  siècle, lorsque Lavoisier et Laplace reconnurent conjointement en elle « une grandeur susceptible d'accroissement et de diminution », et donc accessible à la mesure. La première tentative d'interprétation physique as […] Lire la suite

Voir aussi

Pour citer l’article

Pierre SOUCHAY, « THERMODYNAMIQUE - Thermodynamique chimique », Encyclopædia Universalis [en ligne], consulté le 09 avril 2021. URL : https://www.universalis.fr/encyclopedie/thermodynamique-thermodynamique-chimique/