STATISTIQUE THERMODYNAMIQUE

Carte mentale

Élargissez votre recherche dans Universalis

L'interprétation de l'évolution des systèmes physiques nécessite à la fois les lois de la dynamique, classique ou quantique, et celles de la thermodynamique. Par conséquent, il est important de clarifier la relation entre dynamique et thermodynamique, et de formuler une théorie microscopique des processus irréversibles. En particulier, on souhaiterait obtenir une définition microscopique de l'entropie qui ne soit pas en contradiction avec une interprétation dynamique du second principe de la thermodynamique (cf. entropie et thermodynamique).

Dans le cadre d'une théorie macroscopique, le second principe postule l'existence d'une fonction des variables caractérisant l'état du système, appelée entropie S, qui n'est définie qu'à une constante près et qui, de ce fait, peut toujours être choisie comme non positive. La variation de l'entropie due à des processus internes est, elle, non négative :

tout changement dans le système entraîne que l'entropie S croisse ou reste constante.

Le second principe implique donc qu'un système isolé, qui n'échange ni matière ni énergie avec l'extérieur, atteigne irréversiblement l'état d'équilibre thermodynamique ; et cela de façon asymptotique, c'est-à-dire au bout d'un temps suffisamment long (cf. thermodynamique, irréversibilité). On doit noter la généralité de ce principe (il n'est fait aucune hypothèse sur la nature du système) mais, en même temps, son caractère qualitatif. En effet, la thermodynamique macroscopique ne fournit pas de prescription pour la construction de la fonction d'entropie en dehors de l'équilibre, sauf dans le cas où l'hypothèse d'équilibre local peut être admise (calcul macroscopique). Mais nous savons qu'il existe des systèmes classiques comme les fluides dits non newtoniens et des systèmes quantiques, notamment en optique quantique, pour lesquels cette hypothèse n'est pas acceptable ; dans ces cas, il faut recourir, en général, à des considérations microscopiques.

Afin de pénétrer plus en avan [...]

1 2 3 4 5

pour nos abonnés,
l’article se compose de 7 pages




Écrit par :

Classification


Autres références

«  STATISTIQUE THERMODYNAMIQUE  » est également traité dans :

ENTROPIE

  • Écrit par 
  • Bernard DIU
  •  • 1 359 mots
  •  • 1 média

Dans le chapitre « L'entropie de Boltzmann »  : […] Le xix e  siècle vit aussi l'essor de l'hypothèse atomique, selon laquelle tous les corps sont faits d'atomes. C'est le développement de la chimie quantitative, initiée par Lavoisier, qui amena ainsi à reprendre pour l'affirmer une idée au demeurant fort ancienne puisqu'elle remonte à l'Antiquité grecque. La thermodynamique n'avait, quant à elle, […] Lire la suite☛ http://www.universalis.fr/encyclopedie/entropie/#i_89188

HASARD & NÉCESSITÉ

  • Écrit par 
  • Ilya PRIGOGINE, 
  • Isabelle STENGERS
  • , Universalis
  •  • 9 586 mots

Dans le chapitre « De Boltzmann à Von Neumann »  : […] Jusqu'ici, les thèmes de la nécessité et du hasard, au sens scientifique, n'ont pas été présentés en tant que parties prenantes de problèmes scientifiques. Le démon de Laplace comme le hasard et la nécessité de Monod n'autorisent aucun modèle précis dont la pertinence pourrait être mise à l'épreuve à partir du monde observable mais indiquent seulement comment on doit juger ce monde. Quant à la mé […] Lire la suite☛ http://www.universalis.fr/encyclopedie/hasard-et-necessite/#i_89188

TRANSITION ORDRE-DÉSORDRE

  • Écrit par 
  • Hubert CURIEN
  •  • 4 690 mots
  •  • 6 médias

Dans le chapitre « Paramètres d'ordre à longue et courte distance »  : […] Revenons maintenant au type de désordre que nous avons qualifié de réticulaire et cherchons à définir des paramètres susceptibles de le décrire quantitativement. Pour faire image, référons-nous au cas de l'alliage AB déjà évoqué et décrit dans la figure . Deux options peuvent être prises. La première consiste à s'intéresser au voisinage immédiat de chacun des atomes, c'est-à […] Lire la suite☛ http://www.universalis.fr/encyclopedie/transition-ordre-desordre/#i_89188

Voir aussi

Pour citer l’article

Alkiviadis GRECOS, « STATISTIQUE THERMODYNAMIQUE », Encyclopædia Universalis [en ligne], consulté le 09 septembre 2019. URL : http://www.universalis.fr/encyclopedie/thermodynamique-statistique/