STATISTIQUE MÉCANIQUE

Carte mentale

Élargissez votre recherche dans Universalis

La mécanique statistique a pour but d'expliquer les propriétés de la matière, en particulier ses propriétés thermiques, à partir des lois de la mécanique auxquelles obéissent les atomes et molécules dont elle est formée (et, plus généralement, d'expliquer les propriétés des systèmes composés d'un grand nombre de particules). Il n'est pas possible de décrire le comportement individuel des quelque 1023 atomes qui constituent 1 gramme d'eau ; que ferait-on d'ailleurs de la liste complète de leurs positions à un instant donné, liste qui remplirait environ 1020 pages imprimées ? Il faut donc recourir à une description mécanique à caractère statistique.

Pendant la première moitié du xixe siècle, les travaux de Sadi Carnot, Julius R. V. Mayer, Joseph J. Thomson, Rudolf Clausius, notamment, avaient permis de développer la thermodynamique, qui traite des propriétés thermiques de la matière d'un point de vue macroscopique, à partir de principes posés a priori. Dans la seconde moitié du xixe siècle, la structure atomique de la matière est enfin admise, non sans réticences, par les physiciens ; la mécanique statistique naît alors, principalement grâce à Ludwig Boltzmann, qui reprend certains travaux de James Maxwell, et à Josiah W. Gibbs. Un des objets de la mécanique statistique est donc de donner une interprétation microscopique des lois de la thermodynamique.

Ludwig Boltzmann

Photographie : Ludwig Boltzmann

Physicien et philosophe des sciences, Ludwig Boltzmann (1844-1906) a laissé de nombreux théorèmes, lois et équations qui portent son nom. 

Crédits : ullstein bild/ Getty Images

Afficher

Josiah Willars Gibbs

Photographie : Josiah Willars Gibbs

Le physicien et mathématicien américain Josiah Willard Gibbs (1839-1903), professeur de physique mathématique au Yale College, est considéré comme le fondateur de la mécanique statistique. 

Crédits : Hulton Getty

Afficher

Une telle interprétation doit surmonter un paradoxe : l'évolution dans le temps d'un système macroscopique, telle qu'elle est décrite par la thermodynamique, est irréversible, alors que les lois de la mécanique atomique sous-jacente décrivent des mouvements réversibles. Par exemple, si après avoir versé du lait dans du café on pouvait inverser les vitesses de tous les atomes, on verrait le mélange repasser par ses états antérieurs successifs et se séparer en lait et café. La clé du paradoxe est que les conditions initiales qui conduiraient à une telle séparation sont fantastiquement improbables, et c'est pour cela que des « remontées dans le temps » ne se produisent, en fait, jamais.

Mais la mécanique statistique ne se borne pas à servir de fondement à la thermodynamique ; elle va beaucoup plus loin. La thermodynamique ne peut que relier un phénomène macroscopique à un autre, par des énoncés du type : « Si un fluide obéit à telle équation d'état, alors il cède telle chaleur à l'extérieur quand on le comprime à température constante. » La mécanique statistique, elle, relie les phénomènes macroscopiques à la structure microscopique ; elle permet, au moins en principe, de calculer l'équation d'état elle-même à partir des forces intermoléculaires (cf. état liquide). D'autre part, la mécanique statistique rend possible le calcul de quantités microscopiques, par exemple la fonction de corrélation qui décrit la façon dont une molécule influence en moyenne les positions de ses voisines ; une telle fonction est une quantité observable, car elle régit la diffusion de rayons X ou de neutrons par la matière. Les fonctions de corrélation jouent un rôle important pour l'étude des systèmes hors d'équilibre.

Une application de la mécanique statistique qui a eu un impact considérable sur le développement de la physique moderne a été la théorie du rayonnement du corps noir, élaborée par Planck en 1900, grâce à l'introduction du concept de quantum d'énergie. Ce travail a été le point de départ de toute la physique quantique.

Max Planck

Photographie : Max Planck

Le physicien allemand Max Planck (1858-1947), père de la physique quantique et Prix Nobel de physique en 1918. 

Crédits : Hulton Archive/ Getty Images

Afficher

Fondements

Moyennes temporelles, problème ergodique, ensemble microcanonique

On part de la mécanique microscopique à laquelle obéissent les particules constitutives du système qu'on veut étudier. En principe, c'est la mécanique quantique, et elle engendrera une mécanique statistique quantique. En fait, la mécanique classique est souvent une approximation suffisante (par exemple, pour décrire les mouvements de translation, dans la plupart des cas, des molécules d'un fluide) ; une description classique au niveau microscopique sera la base de la mécanique statistique classique. Celle-ci peut être obtenue à partir de la mécanique statistique quantique en faisant tendre la constante de Planck h vers zéro.

Bornons-nous pour l'instant au cadre classique. On définit un état microscopique du système auquel on s'intéresse par la [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 10 pages

La suite de cet article est accessible aux abonnés

  • Des contenus variés, complets et fiables
  • Accessible sur tous les écrans
  • Pas de publicité

Découvrez nos offres

Déjà abonné ? Se connecter

Médias

Ludwig Boltzmann

Ludwig Boltzmann
Crédits : ullstein bild/ Getty Images

photographie

Josiah Willars Gibbs

Josiah Willars Gibbs
Crédits : Hulton Getty

photographie

Max Planck

Max Planck
Crédits : Hulton Archive/ Getty Images

photographie

Évolution d'un gaz

Évolution d'un gaz
Crédits : Encyclopædia Universalis France

dessin

Afficher les 8 médias de l'article

Écrit par :

Classification

Autres références

«  STATISTIQUE MÉCANIQUE  » est également traité dans :

BOLTZMANN LUDWIG (1844-1906)

  • Écrit par 
  • Pierre COSTABEL
  •  • 1 634 mots
  •  • 1 média

Dans le chapitre « L'interprétation probabiliste du deuxième principe de la thermodynamique »  : […] À partir de ce deuxième principe, Loschmidt a présenté à Boltzmann une objection redoutable, souvent reprise depuis lors, et qui consiste à affirmer l'impossibilité de faire sortir des équations réversibles de la mécanique une interprétation des processus irréversibles de la thermodynamique. Boltzmann a parfaitement compris la valeur de l'objection et y a trouvé un levier puissant pour renouveler […] Lire la suite

BOSE-EINSTEIN CONDENSATION DE

  • Écrit par 
  • Elisabeth GIACOBINO
  •  • 2 756 mots

Dans le chapitre « Le principe de la condensation de Bose-Einstein »  : […] La condensation de Bose-Einstein est un phénomène purement quantique ; elle plonge ses racines dans un monde qui n'a rien d'intuitif. La plupart des effets quantiques se manifestent soit dans le domaine microscopique, soit à basse température. Cette condensation ne déroge pas à la règle puisqu'elle apparaît lorsqu'on se rapproche du zéro absolu (— 273  0 C ou 0 K). Autre fait remarquable et typiqu […] Lire la suite

CINÉTIQUE DES FLUIDES THÉORIE

  • Écrit par 
  • Jean-Loup DELCROIX
  •  • 10 024 mots
  •  • 15 médias

Dans le chapitre « Densité dans l'espace des phases »  : […] En généralisant les notions introduites ci-dessus, on peut définir des fonctions de distribution triples f 123 , quadruples f 1234 , ..., qui fournissent une description de plus en plus fine du système. Pour les études théoriques fondamentales de mécanique statistique et de théorie cinétique, on pousse cette description à l'extrême limite, en considérant une fonction de distribition à N particule […] Lire la suite

CONTINGENCE

  • Écrit par 
  • Bertrand SAINT-SERNIN
  •  • 4 892 mots

Dans le chapitre « La contingence en logique et dans les sciences de la nature »  : […] IEn logique, contingent s'oppose à nécessaire. Est nécessaire une proposition dont le contraire implique contradiction. Une vérité contingente dénote donc un état de fait qui pourrait se passer autrement, qui n'est pas marqué par la nécessité. Du sens logique on glisse au sens réel, quand on s'interroge non plus sur la connexion des propositions au regard de la nécessité, mais sur l'enchaînement d […] Lire la suite

DÉGÉNÉRESCENCE, physique

  • Écrit par 
  • Viorel SERGIESCO
  •  • 644 mots

Terme utilisé dans différents domaines de la physique. Un niveau énergétique est dit dégénéré lorsque plusieurs états d'un même système (atome, électron,etc.) possèdent une même énergie tout en différant les uns des autres par d'autres caractères. La dégénérescence est un concept classique utilisé en théorie des petites oscillations d'un système (macroscopique ou microscopique) à plusieurs degrés […] Lire la suite

DIRAC PAUL (1902-1984)

  • Écrit par 
  • Richard J. EDEN, 
  • Eduardo de RAFAEL
  •  • 1 529 mots
  •  • 2 médias

Dans le chapitre « Fondements de la mécanique quantique »  : […] L'hypothèse quantique, tout d'abord suggérée par Max Planck en 1900, fut largement développée par Albert Einstein et par Niels Bohr. En 1924, on avait une connaissance détaillée mais quelque peu empirique de plusieurs aspects des spectres optiques et de rayons X des atomes ainsi que des interactions entre les atomes et les champs électrique et magnétique. À partir des données sur les spectres et l […] Lire la suite

ENTROPIE

  • Écrit par 
  • Bernard DIU
  •  • 1 360 mots
  •  • 1 média

Dans le chapitre « L'entropie de Boltzmann »  : […] Le xix e  siècle vit aussi l'essor de l'hypothèse atomique, selon laquelle tous les corps sont faits d'atomes. C'est le développement de la chimie quantitative, initiée par Lavoisier, qui amena ainsi à reprendre pour l'affirmer une idée au demeurant fort ancienne puisqu'elle remonte à l'Antiquité grecque. La thermodynamique n'avait, quant à elle, nul besoin d'une réalité sous-jacente – que l'on qu […] Lire la suite

FERMI ENRICO (1901-1954)

  • Écrit par 
  • P. M. HEIMANN, 
  • Eduardo de RAFAEL
  •  • 1 831 mots
  •  • 1 média

Dans le chapitre « Découverte de la théorie statistique quantique »  : […] Selon la théorie statistique classique, l'état d'un gaz (température et pression pour un volume donné) est déterminé par la façon dont sont distribuées les molécules ; cette théorie fournit une représentation de cet état en précisant la distribution et les mouvements de groupes de molécules. Pourtant l'hypothèse suivant laquelle les molécules pouvaient être distinguées les unes des autres dut être […] Lire la suite

FORME

  • Écrit par 
  • Jean PETITOT
  •  • 27 547 mots

Dans le chapitre « Phénomènes critiques »  : […] Lorsqu'on passe de l'optique à la physique des substrats matériels, ces quatre types de considérations peuvent être considérablement généralisés et confirmés. Ils constituent une part essentielle de la physique actuelle. Considérons par exemple un phénomène critique comme un phénomène de transition de phase. C'est un cas élémentaire d'auto-organisation de la matière puisque, à la traversée d'une v […] Lire la suite

GIBBS JOSIAH WILLARD (1839-1903)

  • Écrit par 
  • Paul GLANSDORFF
  •  • 1 271 mots
  •  • 1 média

Physicien et mathématicien américain, J. W. Gibbs est né à New Haven dans le Connecticut le 11 février 1839 ; il y meurt le 28 avril 1903, après y avoir passé presque toute son existence. Issu d'une famille de lettrés, il poursuit des études de latin et de physique (philosophie naturelle à l'époque), puis il entreprend une carrière de professeur de physique mathématique au Yale College. Il effect […] Lire la suite

Voir aussi

Pour citer l’article

Berni J. ALDER, Bernard JANCOVICI, « STATISTIQUE MÉCANIQUE », Encyclopædia Universalis [en ligne], consulté le 24 novembre 2022. URL : https://www.universalis.fr/encyclopedie/mecanique-statistique/