APPRENTISSAGE PROFOND ou DEEP LEARNING
Carte mentale
Élargissez votre recherche dans Universalis
Apprentissage des poids synaptiques
Toutefois, même si de tels réseaux de neurones formels organisés en trois couches permettent de réaliser n’importe quelle fonction logique, il convient de configurer les liaisons synaptiques entre les neurones formels, autrement dit d’associer à chacune de ces liaisons un nombre, ce qui serait extrêmement fastidieux, voire inextricable manuellement, si l’on ne disposait pas de procédures d’apprentissage. On cherche donc, dès le début des années 1950, à élaborer des techniques pour établir automatiquement les pondérations des liaisons entre les synapses formelles en mimant les phénomènes d’apprentissage neuronal.
Pour cela, on recourt à l’apprentissage supervisé en donnant à une machine des exemples étiquetés et en faisant en sorte qu’elle ajuste automatiquement les poids des synapses formelles pour retrouver automatiquement les étiquettes des exemples. À titre d’illustration, si l’on donne des formes géométriques à la machine, on lui indique pour chacune qu'il s’agit d’un losange, d’un carré, d’un pentagone, d’un cercle, d’une ellipse, etc. Et on espère qu’elle sera ensuite en mesure de distinguer automatiquement ces types de formes, après lui avoir donné suffisamment d’exemples ainsi étiquetés.
1
2
3
4
5
…
pour nos abonnés,
l’article se compose de 5 pages
Écrit par :
- Jean-Gabriel GANASCIA : professeur des Universités, université Pierre-et-Marie-Curie
Classification
Autres références
« APPRENTISSAGE PROFOND ou DEEP LEARNING » est également traité dans :
APPRENTISSAGE, psychologie
Dans le chapitre « Depuis les années 1990 » : […] Alors que, dans les années 1970-80, la psychologie cognitive a accordé plus d’attention à l’étude de la mémoire qu’à celle de l’apprentissage, l’évolution des connaissances à partir de la fin des années 1980 a conduit à une fusion des concepts et des théories de ces deux champs. En effet, les théories récentes qui cherchent à rendre compte des processus d’apprentissage s’appuient sur les conceptio […] Lire la suite
BIG DATA
Dans le chapitre « Les aspects algorithmiques et logiciels du big data » : […] Les logiciels de gestion de bases de données traditionnels s’appuient sur les mathématiques relatives à la théorie des ensembles pour appliquer des algorithmes de recherche exhaustifs et déterministes (pour un algorithme donné, les mêmes données initiales impliquent le même résultat en sortie) sur des données fortement structurées (en tables contenant des lignes d’informations pertinentes appelées […] Lire la suite
EXPÉRIENCE (notions de base)
Dans le chapitre « Vers un homme-machine ? » : […] « L’homme d’expérience » n’a pas pour autant disparu du paysage contemporain. Mais ne faut-il pas s’inquiéter du fait que les progrès spectaculaires de l’ intelligence artificielle conduisent certains de nos contemporains à « humaniser » nos machines en leur prêtant la capacité d’acquérir de l’expérience ? L’apparition récente du deep learning tend à rapprocher le fonctionnement mécanique du […] Lire la suite
INTELLIGENCE ARTIFICIELLE (IA)
Dans le chapitre « Renaissance de l’intelligence artificielle » : […] Depuis 2010, la puissance des machines permet d’exploiter de grandes masses de données (ce que l’on appelle couramment les b ig d ata ) avec des techniques d’apprentissage machine qui se fondent sur le recours à des réseaux de neurones formels, c’est-à-dire à des techniques relativement anciennes que l’on déploie aujourd’hui sur des architectures de dimensions beaucoup plus importantes qu’auparava […] Lire la suite
LE CUN YANN (1960- )
Informaticien français, Yann Le Cun est un spécialiste de l’apprentissage profond ( deep l earning en anglais), méthode d’apprentissage automatique ( machine l earning en anglais) de réseaux de neurones artificiels, permettant de les entraîner (à partir d’une base de données d’exemples, par essais-erreurs) à réaliser une tâche donnée. Ses travaux sur les réseaux de neurones artificiels, et not […] Lire la suite
Pour citer l’article
Jean-Gabriel GANASCIA, « APPRENTISSAGE PROFOND ou DEEP LEARNING », Encyclopædia Universalis [en ligne], consulté le 15 mai 2022. URL : https://www.universalis.fr/encyclopedie/apprentissage-profond-deep-learning/