GROUPES (mathématiques)Vue d'ensemble

Carte mentale

Élargissez votre recherche dans Universalis

Les idées de symétrie et de régularité se retrouvent dans toutes les civilisations, bien avant que ne fût conçue la notion de groupe : par exemple, presque tous les groupes discrets de déplacements du plan (il y en a dix-sept types non isomorphes) sont sous-jacents aux multiples ornements géométriques imaginés par les artistes arabes. Les Grecs, dans leur géométrie, ont été très tôt intéressés par les propriétés de régularité, et on sait que le couronnement des Éléments d'Euclide est la construction des cinq polyèdres réguliers, ce qui, en substance, revient à la détermination des groupes finis de rotations dans l'espace à trois dimensions.

Toutefois, la notion de groupe n'apparaît explicitement qu'au cours des travaux sur la résolution des équations algébriques « par radicaux », au début du xixe siècle ; développant une idée de Lagrange, Ruffini et Cauchy sont amenés à considérer les groupes de permutations des racines d'une équation algébrique qui laissent invariantes certaines fonctions de ces racines ; et c'est en approfondissant cette idée que Galois obtiendra ses résultats décisifs sur la résolution par radicaux. Ces premiers groupes sont donc des groupes finis, et c'est sous la forme de la théorie des groupes de permutations que la théorie générale des groupes finis commencera à se développer (notamment chez Mathieu et Jordan) jusque vers 1870. Les débuts de la cristallographie mathématique (vers 1830) font apparaître d'autres groupes finis, cette fois formés de rotations et de symétries laissant un point fixe ; enfin, Jordan, en 1868, aborde franchement l'étude des groupes de déplacements (finis ou non) dans l'espace euclidien à trois dimensions. Un peu plus tard, Klein et Poincaré feront des groupes de déplacements non euclidiens le fondement de leur théorie des fonctions automorphes, tandis que Lie, cherchant à réaliser pour les équations différentielles ce que Galois avait fait pour les équations algébriques, crée la théorie générale des groupes continus de transformations (actuellement appelés groupes de Lie). En même temps, Klein est amené, par ses réflexions sur les fondements de la géométrie « élémentaire », à mettre la notion de groupe de transformations à la base même de cette branche des mathématiques, qui devient un simple chapitre de la théorie des groupes classiques développée depuis Jordan pendant toute la fin du xixe siècle.

Il faut attendre la fin du xixe siècle pour que la structure de groupe telle que nous la concevons aujourd'hui soit enfin définie de façon intrinsèque (et non plus en se restreignant au cas où les éléments du groupe sont des transformations). Depuis lors, la notion de groupe a envahi toutes les mathématiques contemporaines. On s'est, d'une part, aperçu du caractère protéiforme de l'idée de groupe, débordant largement le concept initial de groupe « ensembliste » (groupes topologiques, groupes algébriques, schémas en groupes et, plus généralement, « objets en groupes » d'une catégorie représentant un foncteur représentable de cette catégorie dans la catégorie des groupes) ; on a, en outre, découvert de surprenantes relations entre des types de groupes très divers (par exemple entre les groupes de Lie, les groupes algébriques, les groupes « arithmétiques » et les groupes finis). D'autre part, l'expérience a montré l'extraordinaire efficacité de la notion de groupe dans toutes les parties des mathématiques, une fois qu'on parvient à l'y introduire : groupes d'homologie et d'homotopie en topologie algébrique (cf. topologie – Topologie algébrique), espaces fibrés principaux en géométrie différentielle et en topologie différentielle (cf. variétés différentiables et topologie – Topologie différentielle) en sont des exemples bien connus ; un autre exemple, plus remarquable encore, est la possibilité de définir une structure de groupe sur l'ensemble des classes de structures différentielles compatibles avec une variété (topologique) donnée. Cette tendance a gagné la physique elle-même : en cherchant à expliquer les symétries expérimentales qu'ils constataient dans les phénomènes atomiques, les théoriciens se sont naturellement tournés vers la théorie des groupes, avec un succès assez remarquable, bien que fort mystérieux.

1  2  3  4  5
pour nos abonnés,
l’article se compose de 2 pages

Écrit par :

Classification

Autres références

«  GROUPES, mathématiques  » est également traité dans :

GROUPES (mathématiques) - Généralités

  • Écrit par 
  • Jean-Luc VERLEY
  •  • 6 229 mots
  •  • 1 média

On se propose de présenter ici les notions fondamentales de théorie des groupes qui interviendront constamment dans la suite des articles qui traitent des groupes. Ces articles contiennent un très grand nombre d'exemples, c'est pourquoi cet exposé introductif n'explicite que quelques groupes utilisés aussi ailleurs, notamment en cristallographie, en chimie, e […] Lire la suite

GROUPES (mathématiques) - Groupes classiques et géométrie

  • Écrit par 
  • Jean DIEUDONNÉ
  •  • 8 865 mots
  •  • 3 médias

Jusque vers 1800, la géométrie dite « élémentaire » est restée à peu de chose près ce qu'elle était dans l'Antiquité, tant dans sa substance que dans ses méthodes (l'invention de la « géométrie analytique » ayant à peu près exclusivement servi à prolonger le champ d'action de la géométrie classique dans les directions de la […] Lire la suite

GROUPES (mathématiques) - Groupes finis

  • Écrit par 
  • Everett DADE
  •  • 5 062 mots

Née de l'étude des groupes de permutations des racines d'équations, la théorie des groupes finis s'est développée indépendamment depuis le Traité des substitutions et des équations algébriques (1870) de Camille Jordan. Après les travaux importants de Burnside, de Frobenius et de […] Lire la suite

GROUPES (mathématiques) - Représentation linéaire des groupes

  • Écrit par 
  • Everett DADE
  •  • 3 760 mots

Développée d'abord comme moyen de classification des différentes apparences du même groupe G comme groupe de transformations linéaires, la théorie des représentations linéaires est devenue un des outils les plus puissants pour l'étude de la structure de G. En particulier, les caractères irréductibles d'un groupe fini G, introduits pour mieux classer les représentations linéaires, sont vitaux pour […] Lire la suite

GROUPES (mathématiques) - Groupes de Lie

  • Écrit par 
  • Jean DIEUDONNÉ
  •  • 10 814 mots
  •  • 2 médias

La théorie des groupes de Lie, fondée dans la période de 1870-1880 par le mathématicien norvégien Sophus Lie, a d'abord été considérée comme une partie assez marginale des mathématiques, liée à des problèmes touchant les équations différentielles, les […] Lire la suite

GROUPES DE GALOIS

  • Écrit par 
  • Bernard PIRE
  •  • 178 mots

L'unique mémoire d'Évariste Galois (1811-1832), Sur les conditions de résolubilité des équations par radicaux , présenté à l'Académie des sciences en 1831, reçut un avis défavorable de son rapporteur Siméon-Denis Poisson ; pourtant, l'importance de ce travail dans le développement de la théorie des groupes est maintenant universellement reconnue. Galois montrait l'intérêt d'associer à chaque équat […] Lire la suite

LIE GROUPES DE

  • Écrit par 
  • Bernard PIRE
  •  • 176 mots

La publication des trois volumes du traité intitulé Theorie der Transformationsgruppen , de 1888 à 1893, synthétise l'apport fondamental du mathématicien norvégien Sophus Lie (1842-1899) à la théorie des groupes. Écrit en collaboration avec Friedrich Engel, cet ouvrage rassemble les nombreux résultats obtenus à partir de 1873 sur les groupes continus de transformation. Dans l'espoir d'écrire une t […] Lire la suite

ALGÈBRE

  • Écrit par 
  • Jean-Luc VERLEY
  •  • 7 218 mots

Dans le chapitre « La structure de groupe »  : […] La structure de groupe est une des structures algébriques les plus simples et, sans conteste, la plus importante des mathématiques modernes. Son universalité ne s'arrête pas là : le psychologue Piaget a mis en évidence le rôle essentiel joué par cette notion dans les mécanismes mêmes de la pensée, et H. Poincaré a pu dire que la notion de groupe préexiste dans notre esprit car la géométrie ne se c […] Lire la suite

TRESSES, mathématiques

  • Écrit par 
  • Patrick DEHORNOY
  •  • 5 110 mots
  •  • 25 médias

Dans le chapitre « Un groupe aux multiples facettes »  : […] Ce qui rend les groupes de tresses spécialement intéressants est le fait que, à côté de la construction décrite ci-dessus, plusieurs autres approches a priori indépendantes mènent aux mêmes groupes et en révèlent des aspects complémentaires. […] Lire la suite

ALGÉBRIQUES STRUCTURES

  • Écrit par 
  • Jean-Marie PRUVOST-BEAURAIN
  •  • 34 159 mots

Dans le chapitre « Espèce de structure de groupe-gradué de type A »  : […] Soit G  = (E,  l ) un groupe. Une famille de sous-groupes de G est une application f d'un ensemble A dans P (E) telle que, pour tout élément λ de A, ( f  (λ),  l | f  (λ) ) =  G λ soit un sous-groupe de G . Une graduation de type A sur G est une famille f de sous-groupes distingués de G telle que G soit produit direct de ses sous-groupes G λ i  = ( f  (λ i ),  l | f  (λ i ) ), i apparte […] Lire la suite

Pour citer l’article

Jean DIEUDONNÉ, « GROUPES (mathématiques) - Vue d'ensemble », Encyclopædia Universalis [en ligne], consulté le 08 août 2022. URL : https://www.universalis.fr/encyclopedie/groupes-mathematiques-vue-d-ensemble/