OPTIQUE CRISTALLINEPrincipes physiques

Carte mentale

Élargissez votre recherche dans Universalis

Polarisation rotatoire

Description expérimentale

On a vu qu'un cristal n'est pas biréfringent pour la lumière qui se propage suivant son axe optique. En général, il ne modifie pas l'extinction lorsqu'on le place entre polariseurs croisés. Cependant, certains cristaux rétablissent la lumière dans ces conditions : tel le quartz. Le phénomène diffère de celui observé avec une lame biréfringente sur deux points :

– il n'est pas modifié par une rotation de la lame dans son plan, alors qu'une lame biréfringente produit l'extinction lorsque ses lignes neutres coïncident avec P et A ;

– on peut rétablir l'extinction, en lumière monochromatique, par une rotation de l'analyseur d'un angle convenable θ.

Ces faits s'interprètent en admettant que la direction d'une vibration lumineuse rectiligne qui traverse la lame de quartz tourne d'un angle θ indépendant de l'orientation primitive de la vibration. L'angle de rotation est proportionnel à l'épaisseur l de la lame de quartz. On a :

[θ] est une constante caractéristique du cristal, appelée pouvoir rotatoire spécifique. Elle est égale à 210 mm-1 pour le quartz éclairé avec la lumière jaune du sodium. Selon que, pour l'observateur qui reçoit la lumière, la rotation θ a lieu dans le sens des aiguilles d'une montre ou en sens inverse, le pouvoir rotatoire est dit droit ou gauche, le corps dextrogyre ou lévogyre.

Le phénomène se rencontre dans des cristaux autres que le quartz avec des valeurs différentes de [θ] et aussi dans des milieux fluides : liquides ou gaz purs (essence de térébenthine, vapeurs de camphre) et solutions (très nombreux composés organiques, parmi lesquels les sucres, l'acide tartrique). Dans le cas des solutions, la rotation est souvent proportionnelle à la concentration c :

La mesure du pouvoir rotatoire sert à déterminer le titre des solutions sucrées.

En lumière blanche, la rotation produite dépend de la longueur d'onde (elle est, dans certains cas, à peu près inversement proportionnelle à la longueur d'onde). Pour les substances transparentes, θ croît rapidement du rouge au bleu, de sorte que si OP représente la dire [...]


1  2  3  4  5
pour nos abonnés,
l’article se compose de 8 pages

Médias de l’article

Lois de la réfraction

Lois de la réfraction
Crédits : Encyclopædia Universalis France

dessin

Plan de section principale

Plan de section principale
Crédits : Encyclopædia Universalis France

graphique

Milieux uniaxes

Milieux uniaxes
Crédits : Encyclopædia Universalis France

dessin

Cristaux : indices ordinaires et extraordinaires

Cristaux : indices ordinaires et extraordinaires
Crédits : Encyclopædia Universalis France

tableau

Afficher les 19 médias de l'article


Écrit par :

Classification

Autres références

«  OPTIQUE CRISTALLINE  » est également traité dans :

OPTIQUE CRISTALLINE - Diffraction par les cristaux

  • Écrit par 
  • André AUTHIER
  •  • 8 875 mots
  •  • 18 médias

Le phénomène de diffraction de la lumière par un réseau est bien connu. Il suffit, pour s'en convaincre, de regarder la lumière d'une lampe à travers un voilage. Pour que ce phénomène soit important, il faut que la longueur d'onde du rayonnement et le pas du réseau soient du même ordre de grandeur. La propriété caractéristique de la matière cristallisée est […] Lire la suite

BRAGG sir WILLIAM HENRY (1862-1942) & sir WILLIAM LAWRENCE (1890-1971)

  • Écrit par 
  • Christian BRACCO
  •  • 1 791 mots
  •  • 1 média

Le physicien britannique William Henry Bragg et son fils, le physicien australien William Lawrence Bragg, ont été à l’origine de l’étude de la structure cristalline de composés inorganiques et de molécules organiques au moyen de rayons X. Grâce à ces travaux, ils ont obtenu le prix Nobel de physique en 1915, si bien que William Lawrence Bragg, à vingt-cinq ans, est le plus jeune récipiendaire d’u […] Lire la suite

DICHROÏSME

  • Écrit par 
  • Pierre BELLAND
  •  • 647 mots
  •  • 1 média

Différence d'absorption par un cristal de deux vibrations lumineuses polarisées différemment. Si un cristal est éclairé en lumière blanche polarisée rectilignement, sa coloration (due à l'absorption) varie avec l'orientation du polariseur et du cristal. Un tel cristal est dit pléochroïque ; un cristal biaxe présentant trois teintes principales suivant les trois axes de symétrie géométrique est tri […] Lire la suite

DIFFRACTION, physique

  • Écrit par 
  • Viorel SERGIESCO
  •  • 730 mots

Écart, par rapport aux lois de l'optique géométrique (propagation rectiligne, etc.), de la propagation des ondes (acoustiques, optiques, etc.), en présence d'un obstacle ou, plus généralement, modification de la propagation libre des ondes dont la longueur d'onde n'est pas négligeable devant les dimensions de l'obstacle. En physique ondulatoire, à l'approximation « géométrique », il n'y a propagat […] Lire la suite

FRESNEL AUGUSTIN (1788-1827)

  • Écrit par 
  • André CHAPPERT
  •  • 1 720 mots
  •  • 1 média

Dans le chapitre « La surface d'onde des cristaux bi-axes »  : […] La découverte de la biréfringence du verre comprimé, l'interprétation cinématique de la polarisation rotatoire, la généralisation de la construction de Huygens, établie dans le cas des cristaux uni-axes (la surface d'onde se compose alors d'une sphère et d'un ellipsoïde de révolution) figurent parmi les derniers travaux de Fresnel. Suivant une démarche plus intuitive que rigoureuse, il avance l'id […] Lire la suite

KOSSEL WALTHER (1888-1956)

  • Écrit par 
  • Alain LE DOUARON
  •  • 259 mots

Physicien allemand, né à Berlin et mort à Kassel. Walther Kossel fut professeur à l'université de Kiel (1921), puis à Dantzig et enfin à Tübingen (1947) ; en 1916, il interprète la formule de Moseley relative à la spectroscopie des rayons X, de la même manière que N. Bohr l'avait fait pour la formule de Balmer (spectre de l'hydrogène). En 1928, il montre que la vitesse de croissance d'une face de […] Lire la suite

LAUE MAX VON (1879-1960)

  • Écrit par 
  • Zdenek JOHAN
  •  • 623 mots
  •  • 1 média

Physicien allemand, né à Pfaffendorf le 9 octobre 1879 dans une famille aisée, Max von Laue, malgré la volonté de son père, officier supérieur, est rapidement attiré par la recherche scientifique. Après ses études, il effectue ses premiers travaux de recherche avec Max Planck, dont il devient le disciple et l'ami ; il se consacre à l'enseignement universitaire tout d'abord à Berlin et à Munich (19 […] Lire la suite

MÉTALLOGRAPHIE - Microscopie électronique

  • Écrit par 
  • Guy HENRY, 
  • Barry THOMAS
  •  • 6 076 mots
  •  • 5 médias

Dans le chapitre « Fonctionnement en mode image »  : […] L'obtention des images à l'aide des électrons secondaires est la technique la plus utilisée pour l'observation de la microstructure ou de la topographie d'un échantillon massif. Dans le premier cas, il s'agit d'un échantillon plan poli et attaqué à l'aide des techniques usuelles de la métallographie. Dans le second cas, l'échantillon est le plus souvent examiné directement sans préparation préala […] Lire la suite

PHONON

  • Écrit par 
  • Jean-Paul BURGER
  •  • 2 360 mots
  •  • 3 médias

Dans le chapitre « Détermination des courbes de dispersion ω(k) »  : […] Pour déterminer les courbes de dispersion, on fait interagir le cristal avec un rayonnement externe (rayons X, lumière, neutrons). Les neutrons, par exemple, voient le cristal et ses mouvements, par l'intermédiaire de leurs interactions avec le noyau ; au cours de l'interaction, le neutron ou le photon peut absorber (ou émettre) un phonon : on dit que la particule incidente est diffusée inélastiq […] Lire la suite

Voir aussi

Pour citer l’article

Madeleine ROUSSEAU, « OPTIQUE CRISTALLINE - Principes physiques », Encyclopædia Universalis [en ligne], consulté le 23 octobre 2020. URL : https://www.universalis.fr/encyclopedie/optique-cristalline-principes-physiques/