INTERACTIONS (physique) Vue d'ensemble
La physique moderne considère que l'ensemble des phénomènes physiques s'expliquent par l'action de quatre interactions fondamentales : d'une part, la gravitation et l'électromagnétisme, qui ont une portée infinie et dont la description classique est souvent suffisante ; d'autre part, les interactions nucléaires fortes et faibles, qui ne s'expriment qu'à très courte distance et dont la description est essentiellement quantique. Ce concept d'interaction a tendance à supplanter celui de « force » qui fut élaboré dès l'Antiquité jusqu'à être parfaitement défini par Isaac Newton. Alors que les forces classiques modifient uniquement le mouvement des objets, les interactions peuvent aussi, parfois, modifier leur nature : ainsi, l'interaction nucléaire faible est la cause de la transmutation d'un noyau atomique par radioactivité bêta.
La gravitation est la première interaction fondamentale étudiée depuis l'Antiquité. Ses caractéristiques essentielles sont sa portée infinie et son intrinsèque faiblesse au niveau élémentaire. La gravitation se traduit d'abord par le phénomène de la chute des corps. Dès 1638, Galilée établit que le mouvement naturel des graves est « continuellement accéléré » (on dit aujourd'hui « uniformément accéléré »). Reconnue par Isaac Newton comme cause d'une attraction universelle des corps massifs, la force de gravitation est proportionnelle aux masses des corps et inversement proportionnelle au carré de la distance qui les sépare. Le coefficient de proportionnalité est très petit (dans les unités habituelles, il est égal à 6,67 × 10—11), ce qui exprime la faiblesse de cette interaction entre deux protons, par exemple, comparée à la force de répulsion électrostatique qu'ils exercent. La loi de Newton a été testée de façon toujours plus précise en particulier grâce aux grands observatoires. La théorie de la relativité générale proposée en 1915 par Albert Einstein est une nouvelle théorie de la gravitation, qui adopte un point de vue fondamentalement différent en considérant que les objets massifs structurent l'espace-temps décrit par une géométrie spécifique (dite riemannienne).
L'interaction électromagnétique est la cause de phénomènes extrêmement variés. En plus de son rôle direct dans les effets électriques, magnétiques et optiques, son action est indispensable à tous les processus chimiques et biologiques. Comme la gravitation, elle a une portée infinie. Elle agit sur tous les objets portant une charge électrique de façon proportionnelle à cette charge, si bien que l'existence de charges négatives et positives tend à neutraliser ses effets. L'étude expérimentale des phénomènes électriques et magnétiques, largement développée au xixe siècle, a permis de comprendre qu'ils sont tous dus à la présence d'un champ électromagnétique qui donne naissance à des ondes se propageant à une vitesse égale à celle de la lumière. Les équations de Maxwell décrivent l'évolution couplée de ce champ et des particules chargées : l'intensité et la variation du champ dépendent des densités de charge et de courant, tandis que le mouvement des particules est affecté par les caractéristiques du champ électromagnétique présent. Une caractéristique essentielle de cette théorie est son caractère local : toute action instantanée à distance est impossible ; au contraire, l'action d'une particule chargée sur une autre se décompose en trois processus : rayonnement d'un champ par une source, propagation de ce champ dans le vide ou dans la matière, absorption de ce champ. La lumière est elle-même une manifestation de ce champ électromagnétique, comme le sont aussi les ondes radio et les rayons X découverts à la fin du xixe siècle. La description[...]
La suite de cet article est accessible aux abonnés
- Des contenus variés, complets et fiables
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Écrit par
- Bernard PIRE : directeur de recherche émérite au CNRS, centre de physique théorique de l'École polytechnique, Palaiseau
Classification
Pour citer cet article
Bernard PIRE, « INTERACTIONS (physique) - Vue d'ensemble », Encyclopædia Universalis [en ligne], consulté le . URL :
Autres références
-
INTERACTION (physique)
- Écrit par Étienne KLEIN
- 1 481 mots
Dans la nature, les objets sont soumis à toutes sortes de forces qui s'exercent à distance. Ainsi, par exemple, deux masses s'attirent, deux charges électriques s'attirent ou se repoussent suivant leur signe. Les objets ont une action l'un sur l'autre : ils interagissent. La conception classique de...
-
AXION
- Écrit par Bernard PIRE
- 1 864 mots
- 2 médias
...théorie, la chromodynamique quantique (QCD, pour Quantum ChromoDynamics), construite au début des années 1970 pour rendre compte des manifestations de l’interaction forte liant quarks et gluons comme éléments fondamentaux de la matière nucléaire. Pour suivre le raisonnement des physiciens théoriciens,... -
BANDES D'ÉNERGIE THÉORIE DES
- Écrit par Daniel CALÉCKI
- 833 mots
Dans un atome isolé, les électrons se répartissent, en obéissant au principe de Pauli, entre des niveaux d'énergie bien déterminés, pratiquement sans largeur. Quand on rapproche par la pensée N atomes (avec N ∼ 1023) pour construire un solide et qu'on oublie l'interaction...
-
CHAMP, physique
- Écrit par Viorel SERGIESCO
- 745 mots
Entité décrite par l'ensemble des valeurs d'une grandeur physique, en général à plusieurs composantes, en tous les points de l'espace. D'ordinaire, le champ dépend aussi du temps (évolution du champ). On appelle couramment « champ en un point et au temps ...
-
CHAMPS THÉORIE DES
- Écrit par Bernard PIRE
- 3 928 mots
- 1 média
...électromagnétiques y est finie ; dans le vide, elle est égale à la célérité de la lumière. Toute action instantanée à distance y apparaît impossible, l'action d'une particule chargée sur une autre étant décomposée en trois processus : rayonnement d'un champ par une source, propagation de ce champ dans... -
CHROMODYNAMIQUE QUANTIQUE, en bref
- Écrit par Bernard PIRE
- 101 mots
- 1 média
Construite sur le modèle de l'électrodynamique, la théorie de la chromodynamique quantique explique l'interaction nucléaire forte responsable de la cohésion des noyaux atomiques. Fondée sur un principe abstrait de symétrie, dite de jauge, elle repose sur l'existence d'une...
- Afficher les 36 références