Abonnez-vous à Universalis pour 1 euro

AURORE POLAIRE

Spectres et mécanismes d'émissions

Pour l'essentiel, les émissions lumineuses aurorales proviennent de la désexcitation des composants neutres et ionisés de la haute atmosphère dont l'état excité, et éventuellement ionisé, résulte de l'impact d'une particule énergique ou d'une réaction chimique telle qu'une recombinaison radiative :

ou dissociative :
Ce sont surtout les électrons primaires incidents, d'énergie comprises entre une centaine d'électronvolts (eV) et quelques centaines de kiloélectronvolts, et les électrons secondaires d'énergie inférieure à 50 électronvolts, créés lors des collisions successives des électrons primaires avec les constituants neutres, qui sont à l'origine des processus d'excitation et d'ionisation. Le spectre de ces émissions traduit donc la composition de l'atmosphère dans la gamme d'altitude affectée par ces particules énergiques, c'est-à-dire de 90 à 300 kilomètres environ. Il est dominé par les bandes moléculaires et les raies atomiques de l'azote et de l'oxygène ou de leurs ions. Parmi les raies atomiques les plus intenses, on trouve des raies interdites de l'oxygène atomique, d'une part à 557,7 nanomètres (raie verte), résultat de la transition du niveau d'énergie 1S au niveau 1D, d'autre part à 630,0-636,4 nanomètres (raie rouge), qui résulte de la transition du niveau 1D au niveau 3P. À basse altitude, c'est-à-dire de 90 à 180 kilomètres environ, la raie rouge de l'oxygène est faible, car le temps moyen de collision de O (1D) avec les composants de l'atmosphère neutre est très petit devant le temps moyen d'émission de la raie 630,0 nanomètres (110 s) : les atomes dans l'état 1D ont donc une probabilité beaucoup plus grande de céder leur énergie aux autres composants de l'atmosphère au cours d'une collision que de se désexciter seuls en émettant un photon ; c'est le phénomène bien connu de désactivation collisionnelle. Par contre, la décroissance exponentielle de la densité atmosphérique lorsque l'altitude augmente entraîne une diminution identique de la fréquence des collisions et, au-delà d'environ 200 kilomètres, cette désactivation perd rapidement de son importance. En outre l'énergie d'excitation du niveau 1D (1,96 eV) est nettement plus faible que celle du niveau 1S (4,17 eV) ; par suite, la probabilité d'excitation au niveau 1D est bien plus grande dans les conditions aurorales en raison du spectre en énergie des électrons secondaires de quelques électrons-volts à quelques dizaines d'électrons-volts qui assurent l'essentiel de l'excitation. Ces deux effets cumulés aboutissent à une intensification considérable de la raie rouge au-delà de 200 kilomètres qui devient alors largement majoritaire. Parmi les bandes moléculaires, la plus forte dans le visible est la première bande négative de l'ion N+2 (B2Σ u+ → X2Σg+), avec une émission à 391,4 nanomètres dont l'intensité est comparable à celle de la raie verte de l'oxygène, et une émission plus faible à 427,8 nanomètres. Lorsque la partie supérieure des formes aurorales est éclairée par le Soleil, ce qui est le cas lors des longs crépuscules des hautes latitudes, l'intensité des émissions de N+2 , en particulier de celle à 391,4 nanomètres, est très fortement augmentée par diffusion fluorescente des photons solaires, dans une proportion de 1 à environ 100. Cela explique l'aspect déroutant de certaines aurores : au-dessus d'une région d'émission assez intense dans la raie verte (vers 100-120 km), se trouve une zone sombre surmontée par une zone de couleur violette. En effet, la diffusion fluorescente intensifie l'émission à 391,4 nanomètres et la fait passer au-dessus du seuil de visibilité dans la tranche d'altitude[...]

La suite de cet article est accessible aux abonnés

  • Des contenus variés, complets et fiables
  • Accessible sur tous les écrans
  • Pas de publicité

Découvrez nos offres

Déjà abonné ? Se connecter

Écrit par

Classification

Pour citer cet article

Jean-Jacques BERTHELIER. AURORE POLAIRE [en ligne]. In Encyclopædia Universalis. Disponible sur : (consulté le )

Médias

Aurore polaire - crédits : George Lepp/ Getty Images

Aurore polaire

Aurore polaire : principe de formation - crédits : Planeta Actimedia S.A.© Encyclopædia Universalis France pour la version française.

Aurore polaire : principe de formation

Aurore boréale - crédits : Michal Balada / Shutterstock

Aurore boréale

Autres références

  • CELSIUS ANDERS (1701-1744)

    • Écrit par Bernard PIRE
    • 736 mots

    Anders Celsius est un astronome et physicien suédois qui a donné son nom à une unité de température. Né à Uppsala le 27 novembre 1701, il est le petit-fils des mathématiciens et astronomes Magnus Celsius (1621-1679) et Anders Spole (1630-1699). Comme ses deux grands-pères et son père Nils Celsius...

  • JUICE, mission

    • Écrit par François POULET
    • 2 958 mots
    • 2 médias
    Jupiter est également la planète où ont lieu les aurores polaires les plus intenses du système solaire. Si leur origine liée aux particules éjectées par les volcans d’Io puis emportées par les courants circulant dans la magnétosphère n’a pas été remise en question, Juno et les programmes associés d’observation...
  • MAGNÉTOSPHÈRES

    • Écrit par Michel PETIT
    • 4 690 mots
    • 10 médias

    On a initialement donné le nom de magnétosphère aux régions les plus éloignées de la surface du globe. On voulait ainsi traduire l'influence prédominante du champ magnétique terrestre sur le comportement du milieu qui ne contient pratiquement plus de particules électriquement neutres ; le rayonnement...

  • MÉTÉORES

    • Écrit par Jean-Pierre CHALON
    • 6 633 mots
    • 20 médias
    L’aurore polaire est un phénomène lumineux de la haute atmosphère, qui apparaît sous forme d'arcs, de bandes, de draperies ou de rideaux. Elle est due à la présence de particules chargées d'électricité, émises par le Soleil au cours des éruptions solaires, et agissant sur les gaz raréfiés de la très...
  • Afficher les 8 références

Voir aussi