RÉSEAU, optique

FRAUNHOFER JOSEPH VON (1787-1826)

  • Écrit par 
  • Universalis
  •  • 158 mots

Opticien et astronome allemand, né à Straubing, en Bavière, et mort à Munich. Directeur de l'Institut d'optique de Munich (1818), Fraunhofer fut un des fondateurs de la spectroscopie . Après avoir étudié la diffraction à l'infini, il fabrique le premier un réseau constitué de fils de fer tendus sur deux vis. Il se sert de ces réseaux pour étudier le spectre solaire, et découvre la présence de raie […] Lire la suite

GHOSTS, spectroscopie

  • Écrit par 
  • Pierre BELLAND
  •  • 509 mots

Raies parasites dues aux différentes imperfections des réseaux. Les réseaux réels présentent des défauts plus ou moins importants. Des erreurs de tracé des sillons sont notamment toujours présentes. Si les traits ne sont pas rigoureusement rectilignes, parallèles, équidistants ou si leur profil est déformé, les images données par le réseau sont altérées, des raies fantômes ou ghosts apparaissent d […] Lire la suite

LUMIÈRE

  • Écrit par 
  • Séverine MARTRENCHARD-BARRA
  •  • 6 171 mots
  •  • 4 médias

Dans le chapitre « La diffraction »  : […] La diffraction de la lumière est un phénomène observable lorsque la longueur d'onde de la lumière est du même ordre de grandeur que la dimension d'un obstacle qu'elle franchit (trou, fente, etc.). Si l'image de l'objet est vue de suffisamment loin, son contour n'est pas net : on observe des figures d'interférences (zones claires ou sombres) au-delà de la zone d'éclairement prédite par l'optique g […] Lire la suite

MOIRÉ FRANGES DE

  • Écrit par 
  • Josette CACHELOU
  •  • 241 mots

Une suite de bandes alternativement opaques et transparentes constitue un réseau d'amplitude. Superposons deux réseaux identiques à pas constant. Supposons que l'un de ces réseaux soit fixe et l'autre solidaire d'un élément mobile et que le mouvement ait lieu perpendiculairement à la direction des traits. Si la direction des traits de l'un des réseaux fait un angle α faible avec la direction des t […] Lire la suite

ONDES, physique

  • Écrit par 
  • Bernard PIRE
  •  • 3 574 mots

Dans le chapitre « Diffraction »  : […] Le phénomène de diffraction est la modification des caractéristiques d’une onde qui rencontre un obstacle. Il est commun à tous les types d’ondes mais est particulièrement intéressant dans le cas optique, où il se présente comme une perte de netteté des contours de l’image d’un objet éclairé. Il est la cause principale de la limite de performance des microscopes optiques. Incompatible avec la des […] Lire la suite

RAYONNEMENT COSMIQUE - Rayons X cosmiques

  • Écrit par 
  • Monique ARNAUD, 
  • Robert ROCCHIA, 
  • Robert ROTHENFLUG
  •  • 6 545 mots
  •  • 10 médias

Dans le chapitre « Détection à basse énergie (E < 5 keV) »  : […] Dans le domaine des basses énergies (inférieures à 5 kiloélectronvolts ; symbole : keV), l'amélioration de la résolution angulaire a été spectaculaire grâce à l'emploi de véritables optiques comportant des miroirs paraboliques et hyperboliques (fig. 1b) . Ces miroirs utilisent la propriété de tous les matériaux d'avoir, pour les rayons X, un indice de réfraction très légèrement inférieur à l'unité […] Lire la suite

SPECTROSCOPIE

  • Écrit par 
  • Michel de SAINT SIMON
  •  • 5 066 mots
  •  • 8 médias

Dans le chapitre « Systèmes dispersifs »  : […] Les éléments dispersifs sont de deux types. Le premier est fondé sur la réfraction d'un rayon lumineux lorsque ce dernier passe d'un milieu dans un autre dont l'indice de réfraction est différent. L'angle de déviation diminue lorsque, dans le visible, la longueur d'onde de la radiation augmente : la lumière rouge est moins déviée que la violette. C'est ce qui se produit dans un prisme avec de la […] Lire la suite

ULTRAVIOLET

  • Écrit par 
  • Jacques ROMAND, 
  • Boris VODAR
  •  • 4 447 mots
  •  • 2 médias

Dans le chapitre « Historique et techniques de l'ultraviolet »  : […] Les radiations ultraviolettes sont émises par de nombreuses sources tant naturelles (cf. soleil , étoiles ) qu'artificielles (cf.  infra , Sources d'ultraviolet ). Leur détection est également facile, par suite de leur grande activité photochimique et photoélectrique. Mais l'ultraviolet est, d'une façon générale, très fortement absorbé par la matière, et la technologie dans ce domaine est dominée […] Lire la suite