PARTICULES ÉLÉMENTAIRESBosons

Carte mentale

Élargissez votre recherche dans Universalis

Photon

Le photon est la particule qui décrit les excitations élémentaires du champ électromagnétique quantifié. En théorie quantique, le champ présente, en effet, un double caractère : ondulatoire et corpusculaire. L'aspect ondulatoire se manifeste par la possibilité d'observer des interférences avec des ondes électromagnétiques. L'aspect corpusculaire est révélé par le fait que l'énergie et l'impulsion d'un mode du champ électromagnétique varient de manière discontinue. On appelle mode une composante du champ, de fréquence ν et de vecteur d'onde k bien définis. L'énergie dans le mode étant égale à nhν, où n est un nombre entier et h la constante de Planck, tout se passe comme si le mode contenait n particules, appelées photons, ayant chacune l'énergie hν. Les échanges d'énergie entre la matière et le champ électromagnétique consistent en des absorptions, des émissions ou des diffusions de photons d'un mode à un autre. C'est d'ailleurs en analysant les propriétés de l'effet photoélectrique qu'Einstein a introduit la notion de photon en 1905. Il faut noter que le nombre de photons n'est généralement pas conservé dans ces processus d'interaction.

Le champ électromagnétique quantifié

La notion de photon résulte de la quantification du rayonnement. En théorie quantique, l'état du champ électromagnétique peut être décrit par la donnée de plusieurs nombres entiers positifs ou nuls n1, n2, ..., nj, ... caractérisant l'excitation des divers modes du champ électromagnétique. Par rapport à son état d'énergie minimale (appelé le vide) correspondant à tous les nj nuls, cet état du champ a une énergie (n1hν1 + n2hν2 + ... + nihνi + ...) et une impulsion (n1k1 + ... + niki + ...) où  = h/2π. Le vecteur d'onde kj et la fréquence νj, relatifs à un mode du champ électromagnétique, sont reliés entre eux par l'égalité νj = c|kj|/2π où c est la vitesse de la lumière. Il est donc possible de considérer qu'un tel état du champ décrit un ensemble de n1 particules, ou photons, d'énergie hν1 et d'impulsion k1, ..., ni photons, d'énergie hνi et d'impulsion ki, etc.

La donnée du nombre de photons ni dans chaque mode définit un état du rayonnement. L'état le plus général est construit en superposant linéairement des états à nombres de photons différents. Pour rendre compte de la propagation d'un paquet d'ondes, il faut par exemple utiliser des superpositions linéaires d'états contenant des photons dans des modes différents. Ainsi, le champ émis lors de la désexcitation radiative d'un atome ne comporte-t-il qu'un seul photon réparti sur plusieurs modes du champ.

L'interaction photon-particule

En théorie quantique, l'interaction de la matière avec le champ électromagnétique est décrite en termes d'absorptions, d'émissions ou de diffusions de photons. Ainsi l'effet photoélectrique, qui correspond à l'ionisation d'un atome sous l'action d'un champ électromagnétique de fréquence ν, est-il le résultat de l'absorption d'un photon d'énergie hν par l'atome qui est porté de son niveau fondamental a à un niveau situé au-dessus du seuil d'ionisation (fig. 1). Le photon disparaît au cours d'un tel processus. Si l'énergie d'ionisation de l'atome est EI, la conservation de l'énergie totale implique que l'électron émis ait une énergie cinétique égale à (hν — EI). C'est la relation établie par Einstein pour l'effet photoélectrique.

Effet photo-électrique

Dessin : Effet photo-électrique

Schéma de principe de l'effet photoélectrique. L'atome est porté du niveau fondamental a vers un état ionisant par absorption d'un photon de fréquence ? > E1/h. L'énergie cinétique de l'électron émis est égale à (h?-E1). 

Crédits : Encyclopædia Universalis France

Afficher

De manière générale, dans un processus d'interaction entre matière et rayonnement, l'énergie et l'impulsion du système global « particules matérielles + photons » sont conservées. Ainsi, il est possible de calculer la fréquence d'un photon émis par un atome à partir d'un niveau excité b vers un niveau inférieur a en utilisant ces équations de conservation. Pour un atome initialement au repos, l'énergie du photon hν coïncide avec celle de la transition (Eb — Ea), à un terme correctif près égal à 2k2/2M (où M est la masse de l'atome) et correspondant au recul de l'atome lors de l'émission du photon. Ces équations de conservation jouent également un rôle important dans la description des processus de diffusion. Par exemple, elles permettent de comprendre le changement de fréquence d'un photon lors de sa diffusion sur un électron (effet Compton).

Le moment cinétique global est aussi conservé au cours des interactions matière-rayonnement. Le photon apparaît comme une particule ayant un moment cinétique intrinsè [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 6 pages

Médias de l’article

Effet photo-électrique

Effet photo-électrique
Crédits : Encyclopædia Universalis France

graphique

Paquet d'ondes à un photon incident

Paquet d'ondes à un photon incident
Crédits : Encyclopædia Universalis France

dessin

Peter Higgs

Peter Higgs
Crédits : CERN

photographie

Afficher les 3 médias de l'article


Écrit par :

  • : professeur honoraire au Collège de France
  • : directeur de recherche au C.N.R.S., laboratoire de spectroscopie hertzienne, université de Paris-VI-Pierre-et-Marie-Curie
  • : directeur de recherche au C.N.R.S., laboratoire de spectroscopie hertzienne, université de Paris-VI-Pierre-et Marie-Curie, maître de conférences à l'École polytechnique
  • : directeur de recherche émérite au CNRS, centre de physique théorique de l'École polytechnique, Palaiseau

Classification

Autres références

«  PARTICULES ÉLÉMENTAIRES  » est également traité dans :

PARTICULES ÉLÉMENTAIRES - Caractères généraux

  • Écrit par 
  • Maurice JACOB, 
  • Bernard PIRE
  •  • 8 167 mots
  •  • 12 médias

Les physiciens poursuivent l'étude de la structure de la matière dans le but de trouver plus d'unité et de simplicité dans un monde qui nous frappe par sa diversité et son apparente complexité. N'est-il pas remarquable de pouvoir ramener la variété quasi infinie des objets qui nous entourent aux multiples constructions de quelques constituants fondamentaux ?Tr […] Lire la suite

PARTICULES ÉLÉMENTAIRES - Accélérateurs de particules

  • Écrit par 
  • Michel CROZON, 
  • Jean-Louis LACLARE
  •  • 3 506 mots
  •  • 4 médias

Les modèles et théories qui synthétisent notre compréhension actuelle de la matière et de ses constituants élémentaires – molécules, atomes, particules – ont été confrontés à une multitude d'observations expérimentales. Pour réaliser ces expériences, c'est-à-dire observer l'infiniment petit, on utilise des sondes appropriées capables de pénétrer la matière et d'interagir avec sa structure ultime ; […] Lire la suite

PARTICULES ÉLÉMENTAIRES - Détecteurs de particules

  • Écrit par 
  • Pierre BAREYRE, 
  • Jean-Pierre BATON, 
  • Georges CHARPAK, 
  • Monique NEVEU, 
  • Bernard PIRE
  •  • 10 949 mots
  •  • 14 médias

L'histoire de la physique subatomique est intimement liée à l'évolution des détecteurs de particules. Ces appareils furent souvent inventés pour répondre à des exigences précises de la physique. Ils furent aussi, parfois, le fruit des retombées du progrès de la technologie. Les deux classes de phénomènes qu'ils permettent d'étudier sont les interactions des particules entre elles et leurs désintég […] Lire la suite

PARTICULES ÉLÉMENTAIRES - Fermions

  • Écrit par 
  • Jean-Eudes AUGUSTIN, 
  • Michel PATY, 
  • Bernard PIRE
  •  • 16 248 mots
  •  • 13 médias

Un fermion (ainsi nommé d'après Enrico Fermi, physicien italien qui a élaboré la théorie du comportement collectif de telles particules) est une particule, élémentaire ou composite, de moment angulaire intrinsèque (ou spin) multiple impair de h/4đ, où h est la constante de Planck. Les ensembles de telles particule […] Lire la suite

PARTICULES ÉLÉMENTAIRES - Hadrons

  • Écrit par 
  • Bernard PIRE
  •  • 4 240 mots
  •  • 2 médias

La famille des hadrons rassemble les nombreuses particules sensibles à l'interaction nucléaire forte, cette force extraordinairement intense qui assure la cohésion du noyau en confinant les nucléons – protons et neutrons – dans un tout petit volume, malgré la répulsion électrostatique entre les protons. On a longtemps considéré les hadrons comme des particules élémentaires mais on comprend depuis […] Lire la suite

ANDERSON CARL DAVID (1905-1991)

  • Écrit par 
  • Bernard PIRE
  •  • 554 mots

Le physicien américain Carl David Anderson est né à New York de parents suédois le 3 septembre 1905. Après des études au California Institute of Technology de Pasadena, il y fait toute sa carrière, jusqu'à sa retraite en 1978. Dans sa thèse de doctorat soutenue en 1930, sous la direction de Robert Millikan – célèbre pour la mesure de la constante de Planck et la détermination de la valeur de la c […] Lire la suite

ANTIMATIÈRE

  • Écrit par 
  • Bernard PIRE, 
  • Jean-Marc RICHARD
  •  • 6 914 mots
  •  • 4 médias

Dans le chapitre « Théorie des antiparticules »  : […] À l'époque des premières spéculations sur les antiparticules, la matière pouvait être décomposée en trois constituants primordiaux : l' électron, le proton et le neutron, dont on soupçonnait l'existence et que l'on s'apprêtait à découvrir. Toutes les expériences d'électricité confirment une parfaite symétrie entre les charges positives et les charges négatives. Par exemple, deux charges positives […] Lire la suite

ASTROPARTICULES

  • Écrit par 
  • Pierre BAREYRE
  •  • 2 132 mots
  •  • 1 média

Dans le chapitre « L'astronomie des neutrinos »  : […] Les neutrinos (ν), produits en grande abondance par des processus divers à des énergies qui s'étendent de 10 —5 à 10 15 électronvolts, peuplent l'Univers à raison d'environ 300 par centimètre cube. Sont-ils massifs ? Les mesures directes de leur masse, très difficiles, donnent des limites supérieures, mais plusieurs expériences ont fourni des indications de la présence d'oscillations entre les […] Lire la suite

ATOME

  • Écrit par 
  • José LEITE LOPES
  •  • 9 246 mots
  •  • 15 médias

Dans le chapitre « Particules élémentaires et atomisme »  : […] Nous sommes donc aujourd'hui bien éloignés des notions de substance primordiale et d'atome indivisible héritées des philosophes grecs (tabl. 4). Avant la découverte de la structure électronique des atomes, les particules fondamentales dont seraient faites toutes les choses étaient les atomes des éléments figurant dans la classification périodique. La découverte de l'électron et du proton puis ce […] Lire la suite

BARYONS

  • Écrit par 
  • Bernard PIRE
  •  • 195 mots

Famille de particules sensibles à l'interaction forte et de moment angulaire intrinsèque (spin) multiple impair de h /4π ( h  = constante de Planck). On a longtemps considéré les baryons comme des particules élémentaires mais on comprend maintenant qu'ils sont des assemblages de quarks, d'antiquarks et de gluons. Leur contenu en quarks et en gluons est analysé en termes de superposition d'états : […] Lire la suite

Voir aussi

Pour citer l’article

Claude COHEN-TANNOUDJI, Jacques DUPONT-ROC, Gilbert GRYNBERG, Bernard PIRE, « PARTICULES ÉLÉMENTAIRES - Bosons », Encyclopædia Universalis [en ligne], consulté le 25 janvier 2022. URL : https://www.universalis.fr/encyclopedie/particules-elementaires-bosons/