INTERFÉRENCES LUMINEUSES
Carte mentale
Élargissez votre recherche dans Universalis
Principe des interférences
Vibrations lumineuses
Augustin Fresnel a été le premier à expliquer les phénomènes de l'optique physique en admettant que la lumière est constituée par des vibrations transversales ; il assimilait les vibrations lumineuses aux vibrations élastiques transversales des solides. Cette dernière hypothèse aboutit à de nombreuses contradictions qui ont conduit à remplacer la théorie mécanique de Fresnel par la théorie électromagnétique de Maxwell. Dans celle-ci la lumière apparaît comme due à la propagation simultanée d'un champ électrique et d'un champ magnétique, les vibrations du champ électrique représentant la vibration lumineuse dans l'espace où se propage la lumière.
Une vibration lumineuse en un point de l'espace est représentée par un vecteur ayant ce point pour origine : l'extrémité de ce vecteur décrit une certaine courbe dans un plan perpendiculaire à la direction de propagation, et sa projection sur un axe de ce plan est une fonction périodique du temps. La fonction périodique la plus simple est la fonction sinusoïdale, et l'on représentera la vibration lumineuse par une fonction sinusoïdale du temps. Elle pourra s'écrire, à l'origine du temps :


Propagation d'une vibration lumineuse
Propagation d'une vibration lumineuse.
Crédits : Encyclopædia Universalis France
VT = λn est la longueur d'onde de la vibration. En posant ϕ = 2 π z/λn, on peut écrire :

La longueur d'onde λn est caractéristique d'une radiation donnée dans un milieu déterminé. Si une même radiation change de milieu, sa fréquence reste fixe, mais sa longueur d'onde varie. On caractérise souvent les radiations par leur longueur d'onde dans le vide λc = c/N avec c = 3 . 108 m/s. Dans un milieu d'indice de réfraction n où se propage la vibration de fréquence N, sa longueur d'onde sera λn = V/N = λc V/c = λc/n. L'indice n étant toujours plus grand que 1, les longueurs d'onde sont plus courtes dans les milieux matériels que dans le vide.
La relation précédente s'écrit :

Le produit δ = nz est le chemin optique entre O et M ou encore la différence de marche entre ces deux points. Les différences de phase ϕ sont reliées aux différences de marche δ par l'expression :

On utilisera par la suite la notation λ, longueur d'onde dans l'air, qui diffère très peu de λc.
Production des interférences
Lorsque deux ou plusieurs ondes lumineuses se superposent, on ne peut pas, en général, décrire d'une manière simple les phénomènes observés. Pour préciser les conditions auxquelles deux faisceaux lumineux doivent satisfaire pour pouvoir interférer, il faudrait connaître le mécanisme de l'émission par une source lumineuse. Ce mécanisme n'est pas encore complètement élucidé, mais il semble pouvoir être admis, pour les problèmes que l'on aura à traiter, que les ondes électromagnétiques ne sont pas émises de façon continue, mais « par paquets », c'est-à-dire par trains d'ondes provenant des divers atomes. Les atomes n'émettent que pendant un temps limité τ ; si l'on attend un temps important par rapport à τ, les vibrations observées à l'instant initial auront disparu, d'autres auront pris le relais, mais elles n'auront plus aucune relation avec les vibrations initiales. La vibration d'un atome peut être représentée par l'expression :

Au bout d'un temps supérieur à τ, la vibration précédente cesse, soit par amortissement, soit parce qu'il y a eu choc avec d'autres atomes. Lorsque l'atome réémet une vibration, l'amplitude a et la phase Ψ ont complètement changé. Le phénomène se reproduit ainsi un très grand nombre de fois par seconde.
Considérons un point qui reçoit deux vibrations d'amplitude a et b provenant de deux atomes. À l'instant où la différence de phase est Φ, le carré de l'amplitude résultante A est :

1
2
3
4
5
…
pour nos abonnés,
l’article se compose de 13 pages
Écrit par :
- Maurice FRANÇON : professeur honoraire de la faculté des sciences, université de Paris-VI-Pierre-et-Marie-Curie
- Michel HENRY : agrégé de sciences physiques, docteur ès sciences, maître de conférences à l'université de Paris-VI-Pierre-et-Marie-Curie
Classification
Autres références
« INTERFÉRENCES LUMINEUSES » est également traité dans :
COULEUR DES MINÉRAUX
Dans le chapitre « Causes macro- et microscopiques de la couleur » : […] L'homogénéité physique d'un échantillon joue toutefois un grand rôle. Ainsi, le sulfate de cuivre, qui est bleu, devient blanc une fois réduit en poudre. Ce changement complet de couleur provient du phénomène de diffusion de la lumière qui devient prépondérant quand la taille des grains est suffisamment petite. Le même phénomène se produit avec le marbre blanc de Paros, ou celui de Carrare, et av […] Lire la suite
DÉCOUVERTE DE L'HOLOGRAPHIE
Alors qu'il s'efforçait d'améliorer la qualité des microscopes électroniques en privilégiant la phase et non l'amplitude de l'onde, Dennis Gabor (1900-1979) découvre le principe de l'holographie, ce qui lui vaudra le prix Nobel de physique en 1971. Cette technique permet l'élaboration d'images en trois dimensions, ou hologrammes, en utilisant des interférences lumineuses. Objet d'une publication […] Lire la suite
EXPÉRIENCE DE YOUNG
Le médecin et physicien anglais Thomas Young (1773-1829) s'intéressa particulièrement au problème de la nature de la lumière dont il disait qu'il pouvait nous aider à comprendre la nature de nos sensations et la constitution de l'Univers en général. En 1803, après avoir observé des franges dans l'ombre du bord d'une carte à jouer éclairée par le Soleil, il propose une expérience qui montrera de fa […] Lire la suite
FABRY CHARLES (1867-1945)
Physicien français né à Marseille et mort à Paris, Charles Fabry entra à l'École polytechnique à dix-huit ans. Il s'orienta ensuite vers l'enseignement secondaire, puis, son doctorat obtenu, fut nommé à la faculté des sciences de Marseille en 1894. En 1921, il occupa une chaire de physique à la Sorbonne et en 1926 à l'École polytechnique. Il entra à l'Académie des sciences en 1924. Dans l'œuvre sc […] Lire la suite
HOLOGRAPHIE
Divers cas d'intervention de l'optique cohérente ont été considérés dans les articles interférences lumineuses et lumière - Diffraction, ainsi que dans l'article optique - Images optiques. Pour les sources usuelles, dites « thermiques », la phase change de façon aléatoire, à des intervalles de temps très rapprochés, ce qui limite la cohérence temporelle entre ondes lumineuses issues d'un même p […] Lire la suite
LASERS
Inventé en 1958 par les Américains Arthur L. Schawlow et Charles H. Townes et le Russe Nikolaï G. Bassov, le laser est un dispositif qui engendre des rayonnements particuliers grâce à une technique spéciale d'émission dite « stimulée », par opposition à celle des sources usuelles de lumière qui est « spontanée ». Ce terme est formé des initiales des mots anglais light amplification by stimul […] Lire la suite
LIPPMANN GABRIEL (1845-1921)
Physicien français, Gabriel Lippmann, né le 16 août 1845 à Hollerich (Luxembourg), fait ses études à l'École normale supérieure, puis à Heidelberg et à Berlin. Sa thèse, Relations entre les phénomènes électriques et capillaires (1875), le conduit à fabriquer un électromètre capillaire extrêmement sensible. Nommé professeur à la Sorbonne et directeur du laboratoire de physique, il étudie la polari […] Lire la suite
LUMIÈRE
Dans le chapitre « Les interférences lumineuses » : […] Une des expériences clés de l'optique ondulatoire est l'expérience des fentes d'Young. Ce médecin anglais montra en 1804 que la superposition de deux lumières pouvait engendrer... de l'obscurité ! En éclairant avec une même source deux fentes disposées sur un cache, il observa sur un écran placé en aval une alternance de franges claires et sombres (fig. 2a ). Ce phénomène d'interférences s'expliq […] Lire la suite
MICROSCOPIE
Dans le chapitre « Microscopie à contraste interférentiel » : […] Dans ces microscopes, le contraste de l'image est obtenu par interférence entre deux faisceaux lumineux issus d'une même source. Ces deux faisceaux interagissent différemment avec l'objet avant d'être superposés et d'interférer au nivaux de l'image agrandie. Ce type d'appareil présente un double avantage : d'une part, il augmente le contraste des objets qui, en fond clair, sont très peu contrast […] Lire la suite
MOIRÉ FRANGES DE
Une suite de bandes alternativement opaques et transparentes constitue un réseau d'amplitude. Superposons deux réseaux identiques à pas constant. Supposons que l'un de ces réseaux soit fixe et l'autre solidaire d'un élément mobile et que le mouvement ait lieu perpendiculairement à la direction des traits. Si la direction des traits de l'un des réseaux fait un angle α faible avec la direction des t […] Lire la suite
Voir aussi
- ANALYSEUR optique
- CHAMP ÉLECTRIQUE
- CHAMP MAGNÉTIQUE
- CHEMIN OPTIQUE
- DIFFÉRENCE DE MARCHE
- ÉCLAIRAGE INCOHÉRENT
- ÉMISSION physique
- FAISCEAUX optique
- LAME À FACES PARALLÈLES
- LAMES BIRÉFRINGENTES
- ONDE ou RAYONNEMENT ÉLECTROMAGNÉTIQUE
- DIFFÉRENCE DE PHASE
- POLARISEUR optique
- RÉFLEXION & RÉFRACTION DE LA LUMIÈRE
- SOURCES optique
- TRAIN D'ONDES
Pour citer l’article
Maurice FRANÇON, Michel HENRY, « INTERFÉRENCES LUMINEUSES », Encyclopædia Universalis [en ligne], consulté le 19 mai 2022. URL : https://www.universalis.fr/encyclopedie/interferences-lumineuses/