INTERACTIONS (physique)Interaction électrofaible

Carte mentale

Élargissez votre recherche dans Universalis

La théorie électrofaible

La théorie moderne des interactions faibles, proposée en 1967 par Steven Weinberg et Abdus Salam, les décrit comme dues à l'échange de « bosons intermédiaires » appelés W+, W et Z0 (fig.). Aux courants chargés du modèle de Fermi, cette théorie ajoute des « courants faibles neutres » aptes à créer une paire neutrino-antineutrino. En 1973, l'observation au Cern (Genève) de la diffusion élastique de neutrinos confirme cette prédiction. La découverte expérimentale des bosons W et Z0 dans les années 1980 est un argument décisif en faveur de la pertinence de cette théorie, comme le sont de multiples mesures de précision dans les désintégrations de certains hadrons. Les masses élevées des particules W et Z (presque cent fois supérieures à celle du proton) sont la cause de la faiblesse de la portée de l'interaction faible. L'idée de base de cette théorie est de considérer l'électron et le neutrino comme deux états d'un doublet d'« isospin faible ». L'idée physique sous-jacente est que ce qu'on appelle en un point de l'espace « neutrino » ou « électron » est arbitraire et que la mesure d'un effet d'interaction faible ne dépend pas d'une telle convention. Un tel principe de symétrie fonde ce qu'on appelle les théories de jauge locale. Le groupe mathématique qui correspond à une telle symétrie est le groupe SU(2).

Abdus Salam

Photographie : Abdus Salam

Photographie

Le Pakistanais Abdus Salam (1926-1996) a partagé le prix Nobel de physique, en 1979, avec les Américains Sheldon Glashow et Steven Weinberg. 

Crédits : Hulton Getty

Afficher

Diagramme de Feynman de l'interaction électrofaible

Dessin : Diagramme de Feynman de l'interaction électrofaible

Dessin

L'interaction électrofaible est décrite, dans sa théorie moderne, par Weinberg et Salam en 1967. Elle s'exprime par l'échange de photons ou de bosons, dits intermédiaires, appelés W et Z. Les couplages fondamentaux des bosons W et Z sont ici représentés par des diagrammes de Feynman... 

Crédits : Encyclopædia Universalis France

Afficher

Cette construction théorique permet d'unifier l'électromagnétisme et l'interaction faible en une seule théorie dite « électrofaible ». En termes mathématiques, cela signifie que la théorie unifiée admet un groupe de symétrie locale qui contient comme sous-groupe SU(2) et U(1). Le modèle de Weinberg et Salam choisit le groupe produit SU(2) × U(1). SU(2) et U(1) admettent pour « représentations » des particules médiatrices des forces : le triplet W+ W W0 et le singlet B. Le photon (noté γ) est une superposition des deux éléments électriquement neutres, W0 et B, tandis que la superposition qui lui est « orthogonale » est appelée Z0, selon les équations de mélange : γ = B cos W + W0 sin W , Z0 = - [...]

1  2  3  4  5
pour nos abonnés,
l’article se compose de 4 pages

Médias de l’article

Enrico Fermi

Enrico Fermi
Crédits : Hulton Getty

photographie

Chen-Ning Yang et Tsung-Dao Lee

Chen-Ning Yang et Tsung-Dao Lee
Crédits : Hulton Getty

photographie

Abdus Salam

Abdus Salam
Crédits : Hulton Getty

photographie

Diagramme de Feynman de l'interaction électrofaible

Diagramme de Feynman de l'interaction électrofaible
Crédits : Encyclopædia Universalis France

dessin

Afficher les 4 médias de l'article


Écrit par :

  • : directeur de recherche émérite au CNRS, centre de physique théorique de l'École polytechnique, Palaiseau

Classification

Autres références

«  INTERACTIONS, physique  » est également traité dans :

INTERACTIONS (physique) - Vue d'ensemble

  • Écrit par 
  • Bernard PIRE
  •  • 1 848 mots

La physique moderne considère que l'ensemble des phénomènes physiques s'expliquent par l'action de quatre interactions fondamentales : d'une part, la gravitation et l'électromagnétisme, qui ont une portée infinie et dont la description classique est souvent suffisante ; d'autre part, les interactions nucléaires fortes et faibles, qui ne s'expriment qu'à très courte distance et dont la description […] Lire la suite

INTERACTIONS (physique) - Interaction gravitationnelle

  • Écrit par 
  • Alain KARASIEWICZ, 
  • Marie-Antoinette TONNELAT
  •  • 1 962 mots
  •  • 2 médias

La gravitation est responsable de phénomènes aussi différents que la pesanteur ressentie par tout un chacun, le mouvement des planètes ou l'expansion de l'Univers. Cette force de gravitation est extrêmement faible entre particules élémentaires, mais ses effets deviennent impor […] Lire la suite

INTERACTIONS (physique) - Électromagnétisme

  • Écrit par 
  • Bernard DIU
  •  • 4 620 mots
  •  • 7 médias

Notre vie quotidienne est certes assujettie à la pesanteur, dont tiennent obligatoirement compte tous nos gestes et nos réflexes, mais c'est l'électromagnétisme qui régit en réalité notre existence : tous les phénomènes qui nous entourent et nous construisent, depuis la lumière du […] Lire la suite

INTERACTIONS (physique) - Interaction nucléaire forte

  • Écrit par 
  • Bernard PIRE
  •  • 1 945 mots
  •  • 5 médias

L'interaction nucléaire forte, longtemps inaccessible, est responsable de la cohésion des divers noyaux atomiques. Sa compréhension a nécessité l'usage d'accélérateurs de particules, seuls outils capables de sonder la matière jusqu'à l'échelle où elle joue un rôle dominant. Sa description actuelle se fonde sur la théorie quantique des champs de quarks et de gluons […] Lire la suite

INTERACTIONS (physique) - Unification des forces

  • Écrit par 
  • Bernard PIRE
  •  • 1 612 mots
  •  • 3 médias

L'ambition des scientifiques a toujours été de décrire des phénomènes variés comme des manifestations diverses de quelques processus fondamentaux. En physique, cette démarche a été couronnée de spectaculaires succès ; la reconnaissance du fait qu'un petit nombre d'interactions fondamentales − la gravitation, l'électromagnétisme, les interactions nu […] Lire la suite

BANDES D'ÉNERGIE THÉORIE DES

  • Écrit par 
  • Daniel CALÉCKI
  •  • 949 mots

Dans un atome isolé, les électrons se répartissent, en obéissant au principe de Pauli, entre des niveaux d'énergie bien déterminés, pratiquement sans largeur. Quand on rapproche par la pensée N atomes (avec N  ∼ 10 23 ) pour construire un solide et qu'on oublie l'interaction entre les atomes, on est en droit de dire que chaque niveau atomique d'énergie ε i donne naissance à N niveaux équivalents […] Lire la suite

CHAMP, physique

  • Écrit par 
  • Viorel SERGIESCO
  •  • 847 mots

Entité décrite par l'ensemble des valeurs d'une grandeur physique, en général à plusieurs composantes, en tous les points de l'espace. D'ordinaire, le champ dépend aussi du temps (évolution du champ). On appelle couramment « champ en un point et au temps t  » la valeur de la grandeur prise en un point et un instant déterminés. On peut classer les champs d'après leur nature physique : champ thermiq […] Lire la suite

CHAMPS THÉORIE DES

  • Écrit par 
  • Bernard PIRE
  •  • 4 478 mots
  •  • 1 média

Dans le chapitre « Calculs perturbatifs et diagrammes de Feynman »  : […] La méthode de calcul des observables physiques qui s'est révélée la plus féconde en théorie quantique des champs est fondée sur la théorie mathématique des développements en série. L'idée est de raffiner un résultat par des approximations successives : on considère d'abord que les champs présents dans la réaction étudiée sont libres et que leurs interactions se réduisent à l'échange d'un seul qua […] Lire la suite

CHROMODYNAMIQUE QUANTIQUE

  • Écrit par 
  • Bernard PIRE
  •  • 115 mots
  •  • 1 média

Construite sur le modèle de l'électrodynamique, la théorie de la chromodynamique quantique explique l'interaction nucléaire forte responsable de la cohésion des noyaux atomiques. Fondée sur un principe abstrait de symétrie, dite de jauge, elle repose sur l'existence d'une charge dite de « couleur » portée par les quarks présents dans les protons et les neutrons. Des gluons de masse nulle, porteurs […] Lire la suite

CINÉTIQUE DES FLUIDES THÉORIE

  • Écrit par 
  • Jean-Loup DELCROIX
  •  • 10 017 mots
  •  • 15 médias

Dans le chapitre « Potentiels d'interaction »  : […] Pour pouvoir analyser les phénomènes de collision élastique dans un fluide dilué, il faut donc connaître la loi d'interaction ϕ( r ), et l'on considère alors divers cas selon la nature du fluide observé : – Dans un plasma complètement ionisé, toutes les particules ont une charge électrique, et l'énergie potentielle d'interaction entre une particule de charge Z 1 e et une particule de charge Z 2 e […] Lire la suite

Voir aussi

Pour citer l’article

Bernard PIRE, « INTERACTIONS (physique) - Interaction électrofaible », Encyclopædia Universalis [en ligne], consulté le 16 janvier 2021. URL : https://www.universalis.fr/encyclopedie/interactions-physique-interaction-electrofaible/