INTERACTIONS (physique)Électromagnétisme

Carte mentale

Élargissez votre recherche dans Universalis

Réalités et notions électromagnétiques

Électricité

Certains corps ou objets, dans certaines situations, acquièrent une charge électrique. Elle leur est conférée par apport ou retrait d'électrons. Depuis la découverte de l'électron par J. J. Thomson en 1897, on ne connaît toujours pas la nature physique de la charge, qui accompagne toutes les particules atomiques et subatomiques.

On constate l'existence de deux espèces de charges, que l'on qualifie de positives et négatives, respectivement. Elles suivent, de fait, les règles de l'algèbre : deux charges amenées successivement sur un même objet lui attribuent leur somme algébrique pour charge résultante. Une circonstance particulière se réalise souvent : l'objet, recevant deux charges exactement opposées, se retrouve neutre (charge totale nulle). Toutefois, une même charge globale peut recouvrir des situations très différentes : si les charges constituantes se superposent parfois au même endroit, elles se maintiennent le plus souvent séparées en divers points du même objet.

Dans un atome (globalement neutre) Z électrons – chargés, par convention, négativement – évoluent autour d'un noyau positif très ramassé, constitué de Z protons – charge positive parfaitement opposée à celle de l'électron – et de neutrons – charge nulle – dont le nombre peut différer d'un isotope à un autre. La chimie procède donc, fondamentalement, de la répartition des électrons dans l'atome et de celle des réactifs dans la molécule.

Deux charges opposées localisées en des points distincts constituent un dipôle électrique. Les molécules d'eau H2O et d'ammoniac NH3 sont ainsi dipolaires : les électrons qui assurent dans ces molécules les liaisons covalentes sont (partiellement) repoussés par les H, « électropositifs », et accueillis par l'oxygène (O) ou l'azote (N), « électronégatifs » ; il en résulte un léger excès de charge positive au niveau des H et un égal excès de charge négative sur l'O ou le N.

Deux charges q1 et q2 immobiles en les points M1 et M2 agissent l'une s [...]


1  2  3  4  5
pour nos abonnés,
l’article se compose de 7 pages

Médias de l’article

James Maxwell

James Maxwell
Crédits : Hulton Archive/ Getty Images

photographie

Loi d'Ohm

Loi d'Ohm
Crédits : Encyclopædia Universalis France

dessin

Michael Faraday

Michael Faraday
Crédits : Hulton-Deutsch Collection/ Corbis/ Getty Images

photographie

Lignes de champ magnétique

Lignes de champ magnétique
Crédits : J. R. Eyerman/ The LIFE Picture Collection/ Getty Images

photographie

Afficher les 7 médias de l'article


Écrit par :

  • : professeur émérite à l'université de Paris-VII-Denis-Diderot

Classification

Autres références

«  INTERACTIONS, physique  » est également traité dans :

INTERACTIONS (physique) - Vue d'ensemble

  • Écrit par 
  • Bernard PIRE
  •  • 1 848 mots

La physique moderne considère que l'ensemble des phénomènes physiques s'expliquent par l'action de quatre interactions fondamentales : d'une part, la gravitation et l'électromagnétisme, qui ont une portée infinie et dont la description classique est souvent suffisante ; d'autre part, les interactions nucléaires fortes et faibles, qui ne s'expriment qu'à très courte distance et dont la description […] Lire la suite

INTERACTIONS (physique) - Interaction gravitationnelle

  • Écrit par 
  • Alain KARASIEWICZ, 
  • Marie-Antoinette TONNELAT
  •  • 1 962 mots
  •  • 2 médias

La gravitation est responsable de phénomènes aussi différents que la pesanteur ressentie par tout un chacun, le mouvement des planètes ou l'expansion de l'Univers. Cette force de gravitation est extrêmement faible entre particules élémentaires, mais ses effets deviennent impor […] Lire la suite

INTERACTIONS (physique) - Interaction électrofaible

  • Écrit par 
  • Bernard PIRE
  •  • 2 109 mots
  •  • 4 médias

La première manifestation de l'interaction nucléaire faible qu'on a observée est la désintégration β de certains noyaux atomiques. Cette transmutation d'un élément vers un autre provient de la transformation d'un neutron en un proton avec émission d'un électron et d'un antineutrino. La […] Lire la suite

INTERACTIONS (physique) - Interaction nucléaire forte

  • Écrit par 
  • Bernard PIRE
  •  • 1 945 mots
  •  • 5 médias

L'interaction nucléaire forte, longtemps inaccessible, est responsable de la cohésion des divers noyaux atomiques. Sa compréhension a nécessité l'usage d'accélérateurs de particules, seuls outils capables de sonder la matière jusqu'à l'échelle où elle joue un rôle dominant. Sa description actuelle se fonde sur la théorie quantique des champs de quarks et de gluons […] Lire la suite

INTERACTIONS (physique) - Unification des forces

  • Écrit par 
  • Bernard PIRE
  •  • 1 612 mots
  •  • 3 médias

L'ambition des scientifiques a toujours été de décrire des phénomènes variés comme des manifestations diverses de quelques processus fondamentaux. En physique, cette démarche a été couronnée de spectaculaires succès ; la reconnaissance du fait qu'un petit nombre d'interactions fondamentales − la gravitation, l'électromagnétisme, les interactions nu […] Lire la suite

BANDES D'ÉNERGIE THÉORIE DES

  • Écrit par 
  • Daniel CALÉCKI
  •  • 949 mots

Dans un atome isolé, les électrons se répartissent, en obéissant au principe de Pauli, entre des niveaux d'énergie bien déterminés, pratiquement sans largeur. Quand on rapproche par la pensée N atomes (avec N  ∼ 10 23 ) pour construire un solide et qu'on oublie l'interaction entre les atomes, on est en droit de dire que chaque niveau atomique d'énergie ε i donne naissance à N niveaux équivalents […] Lire la suite

CHAMP, physique

  • Écrit par 
  • Viorel SERGIESCO
  •  • 847 mots

Entité décrite par l'ensemble des valeurs d'une grandeur physique, en général à plusieurs composantes, en tous les points de l'espace. D'ordinaire, le champ dépend aussi du temps (évolution du champ). On appelle couramment « champ en un point et au temps t  » la valeur de la grandeur prise en un point et un instant déterminés. On peut classer les champs d'après leur nature physique : champ thermiq […] Lire la suite

CHAMPS THÉORIE DES

  • Écrit par 
  • Bernard PIRE
  •  • 4 478 mots
  •  • 1 média

Dans le chapitre « Calculs perturbatifs et diagrammes de Feynman »  : […] La méthode de calcul des observables physiques qui s'est révélée la plus féconde en théorie quantique des champs est fondée sur la théorie mathématique des développements en série. L'idée est de raffiner un résultat par des approximations successives : on considère d'abord que les champs présents dans la réaction étudiée sont libres et que leurs interactions se réduisent à l'échange d'un seul qua […] Lire la suite

CHROMODYNAMIQUE QUANTIQUE

  • Écrit par 
  • Bernard PIRE
  •  • 115 mots
  •  • 1 média

Construite sur le modèle de l'électrodynamique, la théorie de la chromodynamique quantique explique l'interaction nucléaire forte responsable de la cohésion des noyaux atomiques. Fondée sur un principe abstrait de symétrie, dite de jauge, elle repose sur l'existence d'une charge dite de « couleur » portée par les quarks présents dans les protons et les neutrons. Des gluons de masse nulle, porteurs […] Lire la suite

CINÉTIQUE DES FLUIDES THÉORIE

  • Écrit par 
  • Jean-Loup DELCROIX
  •  • 10 017 mots
  •  • 15 médias

Dans le chapitre « Potentiels d'interaction »  : […] Pour pouvoir analyser les phénomènes de collision élastique dans un fluide dilué, il faut donc connaître la loi d'interaction ϕ( r ), et l'on considère alors divers cas selon la nature du fluide observé : – Dans un plasma complètement ionisé, toutes les particules ont une charge électrique, et l'énergie potentielle d'interaction entre une particule de charge Z 1 e et une particule de charge Z 2 e […] Lire la suite

Voir aussi

Pour citer l’article

Bernard DIU, « INTERACTIONS (physique) - Électromagnétisme », Encyclopædia Universalis [en ligne], consulté le 19 septembre 2020. URL : https://www.universalis.fr/encyclopedie/interactions-physique-electromagnetisme/