APPRENTISSAGE PROFOND ou DEEP LEARNING

Carte mentale

Élargissez votre recherche dans Universalis

Différents types d’apprentissage machine

On distingue usuellement au moins trois types d’apprentissage machine : l’apprentissage par renforcement, l’apprentissage supervisé et l’apprentissage non supervisé.

L’apprentissage par renforcement suppose que, lors de ses pérégrinations, un agent (entité qui agit de façon autonome) reçoit des récompenses ou des punitions en fonction des actions qu’il exécute. Il s’agit alors d’établir automatiquement, à partir des retours d’expérience, des stratégies d’action des agents qui maximisent l’espérance de récompenses. Ces techniques développées depuis la fin des années 1950 ont fait leurs preuves à la fois dans le domaine des jeux et dans celui de la robotique.

L’apprentissage supervisé suppose que l’on donne des exemples étiquetés, comme des images de lettres manuscrites avec le nom de la lettre correspondante (étiquettes a, b, Z…). L’apprentissage consiste alors à construire une fonction capable de déterminer la lettre de l’alphabet à laquelle se rapporte chaque image. Cette forme d’apprentissage a fait des progrès considérables ces dernières années.

Enfin, le dernier type d’apprentissage repose sur un ensemble d’exemples non étiquetés que l’on cherchera à structurer en rassemblant les exemples apparemment les plus proches et en les distinguant de ceux qui en paraissent éloignés. Il s’agit donc, pour la machine, de pouvoir organiser des connaissances et acquérir des notions nouvelles. Ainsi, pour un ensemble d’instruments de musique, on peut chercher à ce que la machine construise automatiquement des catégories en distinguant, par exemple, les instruments à cordes, à vent, à percussion puis, parmi les cordes, les cordes pincées, frappées, frottées, etc.

L’apprentissage supervisé recourt à des techniques variées fondées sur la logique ou la statistique et s’inspirant de modèles psychologiques, physiologiques ou éthologiques. Parmi celles-ci, des techniques anciennes reposant sur un modèle très approximatif du tissu cérébral – les [...]


1  2  3  4  5
pour nos abonnés,
l’article se compose de 5 pages






Écrit par :

Classification


Autres références

«  APPRENTISSAGE PROFOND ou DEEP LEARNING  » est également traité dans :

APPRENTISSAGE, psychologie

  • Écrit par 
  • Daniel GAONAC'H, 
  • Jean-François LE NY
  •  • 5 932 mots
  •  • 2 médias

Dans le chapitre « Depuis les années 1990 »  : […] Alors que, dans les années 1970-80, la psychologie cognitive a accordé plus d’attention à l’étude de la mémoire qu’à celle de l’apprentissage, l’évolution des connaissances à partir de la fin des années 1980 a conduit à une fusion des concepts et des théories de ces deux champs. En effet, les théories récentes qui cherchent à rendre compte des processus d’apprentissage s’appuient sur les conceptio […] Lire la suite

BIG DATA

  • Écrit par 
  • François PÊCHEUX
  •  • 6 152 mots
  •  • 3 médias

Dans le chapitre « Les aspects algorithmiques et logiciels du big data »  : […] Les logiciels de gestion de bases de données traditionnels s’appuient sur les mathématiques relatives à la théorie des ensembles pour appliquer des algorithmes de recherche exhaustifs et déterministes (pour un algorithme donné, les mêmes données initiales impliquent le même résultat en sortie) sur des données fortement structurées (en tables contenant des lignes d’informations pertinentes appelées […] Lire la suite

INTELLIGENCE ARTIFICIELLE (IA)

  • Écrit par 
  • Jean-Gabriel GANASCIA
  •  • 5 073 mots
  •  • 5 médias

Dans le chapitre « Renaissance de l’intelligence artificielle  »  : […] Depuis 2010, la puissance des machines permet d’exploiter de grandes masses de données (ce que l’on appelle couramment les b ig d ata ) avec des techniques d’apprentissage machine qui se fondent sur le recours à des réseaux de neurones formels, c’est-à-dire à des techniques relativement anciennes que l’on déploie aujourd’hui sur des architectures de dimensions beaucoup plus importantes qu’auparava […] Lire la suite

LE CUN YANN (1960- )

  • Écrit par 
  • Françoise FOGELMAN-SOULIÉ
  •  • 1 252 mots
  •  • 1 média

Informaticien français, Yann Le Cun est un spécialiste de l’apprentissage profond ( deep l earning en anglais), méthode d’apprentissage automatique ( machine l earning en anglais) de réseaux de neurones artificiels, permettant de les entraîner (à partir d’une base de données d’exemples, par essais-erreurs) à réaliser une tâche donnée. Ses travaux sur les réseaux de neurones artificiels, et not […] Lire la suite

Voir aussi

Pour citer l’article

Jean-Gabriel GANASCIA, « APPRENTISSAGE PROFOND ou DEEP LEARNING », Encyclopædia Universalis [en ligne], consulté le 24 mars 2020. URL : http://www.universalis.fr/encyclopedie/apprentissage-profond-deep-learning/